Nejvíce citovaný článek - PubMed ID 29234080
Genomic diversity and macroecology of the crop wild relatives of domesticated pea
Over 80% of the global population addresses their primary healthcare needs using traditional medicine based on medicinal plants. Consequently, there's a rising demand for these plants for both household and industrial use at local, regional, national, and international levels. However, wild harvesting has negatively impacted natural ecosystems. Cultivating medicinal species has been proposed as a conservation strategy to alleviate this pressure. Yet, in this age of global climate change concerns, smallholder farmers' views on the benefits of such cultivation clash with the uncertainties of climate change impacts, amplifying their anxieties. In this context, the climate change dependence of ex situ cultivation of ten wild medicinal taxa with significant ethnopharmacological interest in Crete, Greece, were studied, projecting their potential habitat suitability under various future climate scenarios. The results demonstrated species-specific effects. Based on the potential cultivation area gains and losses, these effects can be categorized into three groups. We also outlined the spatial patterns of these gains and losses, offering valuable insights for regional management strategies benefiting individual practitioners.
- Klíčová slova
- Crete, Ecological Niche Modeling, Lamiaceae, adaptation strategies, climate change, ex situ conservation, habitat shift, medicinal plants, precision agriculture, wild harvest,
- Publikační typ
- časopisecké články MeSH
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
- Klíčová slova
- Crop wild relatives, Diversification, Domestication, Genes, Grain legumes, Selective sweeps,
- MeSH
- domestikace * MeSH
- Fabaceae * genetika MeSH
- jedlá semena genetika MeSH
- lidé MeSH
- šlechtění rostlin MeSH
- zemědělské plodiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.
- Klíčová slova
- abiotic stress, adaptation, breeding, crop wild relatives, legumes, marginal environment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.
- MeSH
- chromozomy rostlin genetika MeSH
- Fabaceae klasifikace genetika MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- genomika MeSH
- hrách setý genetika MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- referenční standardy MeSH
- regulace genové exprese u rostlin MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostlinné proteiny genetika MeSH
- sekvenování celého genomu MeSH
- zásobní proteiny semen genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- zásobní proteiny semen MeSH
Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.
- Klíčová slova
- acetyl-CoA carboxylase, hybrid incompatibility, hybrid necrosis, nuclear-cytoplasmic conflict, pea, reproductive isolation, speciation,
- MeSH
- acetyl-CoA-karboxylasa genetika MeSH
- alely * MeSH
- buněčné jádro genetika metabolismus MeSH
- cytoplazma genetika metabolismus MeSH
- domestikace MeSH
- fylogeneze MeSH
- hrách setý genetika metabolismus MeSH
- plastidy genetika metabolismus MeSH
- reprodukční izolace MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetyl-CoA-karboxylasa MeSH
- rostlinné proteiny MeSH
BACKGROUND: Seed germination is one of the earliest key events in the plant life cycle. The timing of transition from seed to seedling is an important developmental stage determining the survival of individuals that influences the status of populations and species. Because of wide geographical distribution and occurrence in diverse habitats, wild pea (Pisum sativum subsp. elatius) offers an excellent model to study physical type of seed dormancy in an ecological context. This study addresses the gap in knowledge of association between the seed dormancy, seed properties and environmental factors, experimentally testing oscillating temperature as dormancy release clue. METHODS: Seeds of 97 pea accessions were subjected to two germination treatments (oscillating temperatures of 25/15 °C and 35/15 °C) over 28 days. Germination pattern was described using B-spline coefficients that aggregate both final germination and germination speed. Relationships between germination pattern and environmental conditions at the site of origin (soil and bioclimatic variables extracted from WorldClim 2.0 and SoilGrids databases) were studied using principal component analysis, redundancy analysis and ecological niche modelling. Seeds were analyzed for the seed coat thickness, seed morphology, weight and content of proanthocyanidins (PA). RESULTS: Seed total germination ranged from 0% to 100%. Cluster analysis of germination patterns of seeds under two temperature treatments differentiated the accessions into three groups: (1) non-dormant (28 accessions, mean germination of 92%), (2) dormant at both treatments (29 acc., 15%) and (3) responsive to increasing temperature range (41 acc., with germination change from 15 to 80%). Seed coat thickness differed between groups with dormant and responsive accessions having thicker testa (median 138 and 140 µm) than non-dormant ones (median 84 mm). The total PA content showed to be higher in the seed coat of dormant (mean 2.18 mg g-1) than those of non-dormant (mean 1.77 mg g-1) and responsive accessions (mean 1.87 mg g-1). Each soil and bioclimatic variable and also germination responsivity (representing synthetic variable characterizing germination pattern of seeds) was spatially clustered. However, only one environmental variable (BIO7, i.e., annual temperature range) was significantly related to germination responsivity. Non-dormant and responsive accessions covered almost whole range of BIO7 while dormant accessions are found in the environment with higher annual temperature, smaller temperature variation, seasonality and milder winter. Ecological niche modelling showed a more localized potential distribution of dormant group. Seed dormancy in the wild pea might be part of a bet-hedging mechanism for areas of the Mediterranean basin with more unpredictable water availability in an otherwise seasonal environment. This study provides the framework for analysis of environmental aspects of physical seed dormancy.
- Klíčová slova
- Dormancy, Germination, Legumes, Niche-modelling, Pea, Proanthocyanidins, Seed coat, Temperature oscillations, Testa,
- Publikační typ
- časopisecké články MeSH
Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum), we demonstrated that domesticated P. sativum and the Ethiopian pea (P. abyssinicum) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum, which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum.
- Klíčová slova
- Ethiopian pea, Pisum sativum, domestication, pea, seed dormancy,
- Publikační typ
- časopisecké články MeSH