Nejvíce citovaný článek - PubMed ID 29371626
Phaeocystales, comprising the genus Phaeocystis and an uncharacterized sister lineage, are nanoplanktonic haptophytes widespread in the global ocean. Several species form mucilaginous colonies and influence key biogeochemical cycles, yet their underlying diversity and ecological strategies remain underexplored. Here, we present new genomic data from 13 strains, including three high-quality reference genomes (N50 > 30 kbp), and integrate previous metagenome-assembled genomes to resolve a robust phylogeny. Divergence timing of P. antarctica aligns with Miocene cooling and Southern Ocean isolation. Genomic traits reveal metabolic flexibility, including mixotrophic nitrogen acquisition in temperate waters and gene expansions linked to polar nutrient adaptation. Concordantly, transcriptomic comparisons between temperate and polar Phaeocystis suggest Southern Ocean populations experience iron and B12 limitation. We also identify signatures of horizontal gene transfer and endogenous giant virus/virophage insertions. Together, these findings highlight Phaeocystales as an ecologically versatile and geographically widespread lineage shaped by evolutionary innovation and adaptation to contrasting environmental stressors.
- MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genom MeSH
- genomika MeSH
- Haptophyta * genetika klasifikace metabolismus MeSH
- metagenom MeSH
- oceány a moře MeSH
- přenos genů horizontální MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- oceány a moře MeSH
At high latitudes, strong seasonal differences in light availability affect marine organisms and regulate the timing of ecosystem processes. Marine protists are key players in Arctic aquatic ecosystems, yet little is known about their ecological roles over yearly cycles. This is especially true for the dark polar night period, which up until recently was assumed to be devoid of biological activity. A 12 million transcripts catalogue was built from 0.45 to 10 μm protist assemblages sampled over 13 months in a time series station in an Arctic fjord in Svalbard. Community gene expression was correlated with seasonality, with light as the main driving factor. Transcript diversity and evenness were higher during polar night compared to polar day. Light-dependent functions had higher relative expression during polar day, except phototransduction. 64% of the most expressed genes could not be functionally annotated, yet up to 78% were identified in Arctic samples from Tara Oceans, suggesting that Arctic marine assemblages are distinct from those from other oceans. Our study increases understanding of the links between extreme seasonality and biological processes in pico- and nanoplanktonic protists. Our results set the ground for future monitoring studies investigating the seasonal impact of climate change on the communities of microbial eukaryotes in the High Arctic.
- MeSH
- ekosystém * MeSH
- estuár MeSH
- Eukaryota MeSH
- exprese genu MeSH
- klimatické změny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Marine heterotrophic flagellates (HF) are dominant bacterivores in the ocean, where they represent the trophic link between bacteria and higher trophic levels and participate in the recycling of inorganic nutrients for regenerated primary production. Studying their activity and function in the ecosystem is challenging since most of the HFs in the ocean are still uncultured. In the present work, we investigated gene expression of natural HF communities during bacterivory in four unamended seawater incubations. RESULTS: The most abundant species growing in our incubations belonged to the taxonomic groups MAST-4, MAST-7, Chrysophyceae, and Telonemia. Gene expression dynamics were similar between incubations and could be divided into three states based on microbial counts, each state displaying distinct expression patterns. The analysis of samples where HF growth was highest revealed some highly expressed genes that could be related to bacterivory. Using available genomic and transcriptomic references, we identified 25 species growing in our incubations and used those to compare the expression levels of these specific genes. Video Abstract CONCLUSIONS: Our results indicate that several peptidases, together with some glycoside hydrolases and glycosyltransferases, are more expressed in phagotrophic than in phototrophic species, and thus could be used to infer the process of bacterivory in natural assemblages.
- Klíčová slova
- Bacterivory, Functional genes, Glycosidases, Heterotrophic flagellates, Metatranscriptomics, Peptidases, Phagocytosis, Unamended incubations,
- MeSH
- ekosystém * MeSH
- Eukaryota * genetika MeSH
- exprese genu MeSH
- mořská voda mikrobiologie MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
- MeSH
- Bacteria MeSH
- ledový příkrov MeSH
- mikrořasy * genetika MeSH
- oceány a moře MeSH
- přenos genů horizontální * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Arktida MeSH
- oceány a moře MeSH
Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth's biodiversity.
- Klíčová slova
- Bioinformatics, Data Management, Data Standards, Genetic Resources, Genomics, Sequencing, Taxonomy,
- MeSH
- biodiverzita * MeSH
- biologické vědy * MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.
- Klíčová slova
- APEX2, chloroplast, diatom, infectious disease, iron, metal trafficking, microbiology, phytotransferrin, plant biology,
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- chloroplasty metabolismus MeSH
- multigenová rodina MeSH
- proteomika metody MeSH
- rozsivky genetika metabolismus MeSH
- transferin metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- transferin MeSH
- železo MeSH
The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.
- Klíčová slova
- Bigelowiella natans, iron, metagenomics, metatranscriptomics, photosynthesis, phytoplankton, proteomics,
- Publikační typ
- časopisecké články MeSH
Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
- MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- DNA aplikace a dávkování MeSH
- druhová specificita MeSH
- ekosystém MeSH
- Eukaryota klasifikace fyziologie MeSH
- mořská biologie * MeSH
- transformace genetická * MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- zelené fluorescenční proteiny MeSH
Phytoplankton growth is limited in vast oceanic regions by the low bioavailability of iron. Iron fertilization often results in diatom blooms, yet the physiological underpinnings for how diatoms survive in chronically iron-limited waters and outcompete other phytoplankton when iron becomes available are unresolved. We show that some diatoms can use siderophore-bound iron, and exhibit a species-specific recognition for siderophore types. In Phaeodactylum tricornutum, hydroxamate siderophores are taken up without previous reduction by a high-affinity mechanism that involves binding to the cell surface followed by endocytosis-mediated uptake and delivery to the chloroplast. The affinity recorded is the highest ever described for an iron transport system in any eukaryotic cell. Collectively, our observations suggest that there are likely a variety of iron uptake mechanisms in diatoms besides the well-established reductive mechanism. We show that iron starvation-induced protein 1 (ISIP1) plays an important role in the uptake of siderophores, and through bioinformatics analyses we deduce that this protein is largely diatom-specific. We quantify expression of ISIP1 in the global ocean by querying the Tara Oceans atlas of eukaryotic genes and show a link between the abundance and distribution of diatom-associated ISIP1 with ocean provinces defined by chronic iron starvation.
- MeSH
- chloroplasty metabolismus MeSH
- druhová specificita MeSH
- endocytóza * MeSH
- genový knockdown MeSH
- rozsivky fyziologie MeSH
- siderofory metabolismus MeSH
- transport proteinů MeSH
- vodní organismy metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- siderofory MeSH
- železo MeSH