Nejvíce citovaný článek - PubMed ID 29684429
Simultaneous in vitro generation of human CD34+-derived dendritic cells and mast cells from non-mobilized peripheral blood mononuclear cells
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
- MeSH
- aktivace lymfocytů * účinky léků imunologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buněčné linie MeSH
- buněčný receptor 2 viru hepatitidy A metabolismus MeSH
- CD8-pozitivní T-lymfocyty * imunologie účinky léků MeSH
- cytokiny metabolismus MeSH
- dendritické buňky * imunologie účinky léků metabolismus MeSH
- imidazoly farmakologie MeSH
- lidé MeSH
- mastocyty * imunologie účinky léků metabolismus MeSH
- monocyty imunologie účinky léků metabolismus MeSH
- proliferace buněk * účinky léků MeSH
- thapsigargin * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- buněčný receptor 2 viru hepatitidy A MeSH
- cytokiny MeSH
- HAVCR2 protein, human MeSH Prohlížeč
- imidazoly MeSH
- thapsigargin * MeSH
Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.
- MeSH
- antigeny CD274 metabolismus MeSH
- buněčné linie MeSH
- imunoterapie MeSH
- lidé MeSH
- ligandy MeSH
- maligní fibrózní histiocytom * MeSH
- myši nahé MeSH
- myši MeSH
- sarkom * patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD274 MeSH
- ligandy MeSH
Coronavirus disease 2019 (COVID-19) vaccines effectively elicit humoral and cellular immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in healthy populations. This immunity decreases several months after vaccination. However, the efficacy of vaccine-induced immunity and its durability in patients with severe asthma on biological therapy are unknown. In this study, we evaluated the effectiveness and durability of mRNA vaccine-induced SARS-CoV-2-specific humoral and cellular immunity in severe asthma patients on biological therapy. The study included 34 patients with severe asthma treated with anti-IgE (omalizumab, n=17), anti-IL5 (mepolizumab, n=13; reslizumab, n=3), or anti-IL5R (benralizumab, n=1) biological therapy. All patients were vaccinated with two doses of the BNT162b2 mRNA vaccine with a 6-week interval between the doses. We found that this COVID-19 vaccination regimen elicited SARS-CoV-2-specific humoral and cellular immunity, which had significantly declined 6 months after receipt of the second dose of the vaccine. The type of biological treatment did not affect vaccine-elicited immunity. However, patient age negatively impacted the vaccine-induced humoral response. On the other hand, no such age-related impact on vaccine-elicited cellular immunity was observed. Our findings show that treatment of patients with severe asthma with biological therapy does not compromise the effectiveness or durability of COVID-19 vaccine-induced immunity.
- Klíčová slova
- COVID-19 vaccination, SARS-CoV-2, cellular immunity, humoral immunity, severe asthma patients on biological therapy,
- MeSH
- bronchiální astma * terapie MeSH
- buněčná imunita MeSH
- COVID-19 * prevence a kontrola MeSH
- humorální imunita MeSH
- lidé MeSH
- mRNA vakcíny MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- syntetické vakcíny MeSH
- vakcína BNT162 MeSH
- vakcinace MeSH
- vakcíny proti COVID-19 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mRNA vakcíny MeSH
- protilátky virové MeSH
- syntetické vakcíny MeSH
- vakcína BNT162 MeSH
- vakcíny proti COVID-19 MeSH
INTRODUCTION: The COVID-19 vaccine was designed to provide protection against infection by the severe respiratory coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19). However, the vaccine's efficacy can be compromised in patients with immunodeficiencies or the vaccine-induced immunoprotection suppressed by other comorbidity treatments, such as chemotherapy or immunotherapy. To enhance the protective role of the COVID-19 vaccine, we have investigated a combination of the COVID-19 vaccination with ex vivo enrichment and large-scale expansion of SARS-CoV-2 spike glycoprotein-reactive CD4+ and CD8+ T cells. METHODS: SARS-CoV-2-unexposed donors were vaccinated with two doses of the BNT162b2 SARS-CoV-2 vaccine. The peripheral blood mononuclear cells of the vaccinated donors were cell culture-enriched with T cells reactive to peptides derived from SARS-CoV-2 spike glycoprotein. The enriched cell cultures were large-scale expanded using the rapid expansion protocol (REP) and the peptide-reactive T cells were evaluated. RESULTS: We show that vaccination with the SARS-CoV-2 spike glycoprotein-based mRNA COVID-19 vaccine-induced humoral response against SARS-CoV-2 spike glycoprotein in all tested healthy SARS-CoV-2-unexposed donors. This humoral response was found to correlate with the ability of the donors' PBMCs to become enriched with SARS-CoV-2 spike glycoprotein-reactive CD4+ and CD8+ T cells. Using an 11-day REP, the enriched cell cultures were expanded nearly 1000-fold, and the proportions of the SARS-CoV-2 spike glycoprotein-reactive T cells increased. CONCLUSION: These findings show for the first time that the combination of the COVID-19 vaccination and ex vivo T cell large-scale expansion of SARS-CoV-2-reactive T cells could be a powerful tool for developing T cell-based adoptive cellular immunotherapy of COVID-19.
- Klíčová slova
- COVID-19 vaccination, SARS-CoV-2, cellular immunity, ex vivo expansion, humoral immunity, spike glycoprotein-reactive,
- MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- COVID-19 * imunologie MeSH
- glykoprotein S, koronavirus imunologie MeSH
- glykoproteiny MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- vakcína BNT162 MeSH
- vakcíny proti COVID-19 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- glykoproteiny MeSH
- protilátky virové MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcína BNT162 MeSH
- vakcíny proti COVID-19 * MeSH
The adaptive immune response to severe acute respiratory coronavirus 2 (SARS-CoV-2) is important for vaccine development and in the recovery from coronavirus disease 2019 (COVID-19). Men and cancer patients have been reported to be at higher risks of contracting the virus and developing the more severe forms of COVID-19. Prostate cancer (PCa) may be associated with both of these risks. We show that CD4+ T cells of SARS-CoV-2-unexposed patients with hormone-refractory (HR) metastatic PCa had decreased CD4+ T cell immune responses to antigens from SARS-CoV-2 spike glycoprotein but not from the spiked glycoprotein of the 'common cold'-associated human coronavirus 229E (HCoV-229E) as compared with healthy male volunteers who responded comparably to both HCoV-229E- and SARS-CoV-2-derived antigens. Moreover, the HCoV-229E spike glycoprotein antigen-elicited CD4+ T cell immune responses cross-reacted with the SARS-CoV-2 spiked glycoprotein antigens. PCa patients may have impaired responses to the vaccination, and the cross-reactivity can mediate antibody-dependent enhancement (ADE) of COVID-19. These findings highlight the potential for increased vulnerability of PCa patients to COVID-19.
- Klíčová slova
- COVID-19, HCoV-229E, SARS-CoV-2, prostate cancer, spike glycoprotein,
- MeSH
- adaptivní imunita MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- COVID-19 imunologie virologie MeSH
- cytokiny imunologie MeSH
- glykoprotein S, koronavirus imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidský koronavirus 229E imunologie MeSH
- nádory prostaty imunologie patologie MeSH
- SARS-CoV-2 imunologie MeSH
- senioři MeSH
- zkřížené reakce MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- glykoprotein S, koronavirus MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.
- Klíčová slova
- LAD2 human mast cells, adoptive cellular immunotherapy, dendritic cells, maturation,
- MeSH
- adjuvancia imunologická farmakologie MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné kultury metody MeSH
- dendritické buňky cytologie účinky léků imunologie MeSH
- imunoterapie adoptivní * MeSH
- kokultivační techniky MeSH
- lidé MeSH
- mastocyty cytologie účinky léků imunologie MeSH
- monocyty cytologie účinky léků imunologie MeSH
- prezentace antigenu účinky léků imunologie MeSH
- thapsigargin farmakologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- thapsigargin MeSH
CD8+ T cells protect against tumors and intracellular pathogens. The inflammatory cytokines IL-2, IL-15, and IL-7 are necessary for their expansion. However, elevated serum levels of these cytokines are often associated with cancer, poorer prognosis of cancer patients, and exhaustion of antigen-expanded CD8+ T cells. The impact of acute conditioning of antigen-expanded CD8+ T cells with these cytokines is unknown. Here, we generated antigen-expanded CD8+ T cells using dendritic cells and PC-3 cells. The cells were acutely (18-24 h) conditioned with IL-2 and either the GSK3β inhibitor TWS119, the mTORC1 inhibitor rapamycin, or the mTORC1/2 inhibitor Torin1, then their immediate and post-re-expansion (distal) cytokine responses after antigen rechallenge were evaluated. We found that acute IL-2 conditioning upregulated the immediate antigen-induced cytokine response of the tested cells. Following their re-expansion, however, the cells showed a decreased cytokine response. These IL-2 conditioning-mediated impacts were counteracted with TWS119 or rapamycin but not with Torin1. Our data revealed that the acute conditioning of antigen-expanded CD8+ T cells with IL-2 modulates the GSK3β-mTORC signaling axis. This modulation differentially affected the immediate and distal cytokine responses of the cells. The acute targeting of this signaling axis could, therefore, represent a novel strategy for the modulation of antigen-expanded CD8+ T cells.
- Klíčová slova
- CD8+ T cells, GSK-3β, TWS119, Tim-3, Torin1, antigen rechallenge, cytokine starvation, mTOR, rapamycin,
- Publikační typ
- časopisecké články MeSH
In a limited number of human malignancies, anti-CD47 therapy leads to the rapid clearance of tumor cells by macrophages. In esophageal squamous cell carcinoma, anti-CD47 treatment has shown promising results in vitro. However, the CD47 expression pattern in tumor-infiltrating lymphocytes (TILs), which are associated with prolonged overall survival and serve as a positive prognostic factor, is largely unknown. In this study, a total of 36 tissue samples from the tumor, peritumoral tissue, and adjacent healthy esophageal tissue was obtained from 12 esophageal carcinoma (EC) patients, and the surface expression of CD47 was evaluated in natural killer (NK) cells, CD8+ T cells, and the nonlymphocyte cell fraction. We found that the proportions of the evaluated cells and their CD47-expressing populations were comparable across the analyzed tissue compartments. However, the proportions of CD47-expressing populations in the analyzed tissue compartments were significantly higher in NK cells and CD8+ T cells than in the nonlymphocyte cell fraction. Importantly, the intensity of CD47 staining was also significantly higher in the tested immune cells than in the nonlymphocyte cell fraction. High expression of CD47 in tissue-infiltrating NK cells and CD8+ T cells in EC patients can, therefore, affect the efficacy of anti-CD47 therapy in EC.
- MeSH
- antigeny CD47 genetika metabolismus MeSH
- buňky NK metabolismus MeSH
- CD8-pozitivní T-lymfocyty metabolismus MeSH
- karcinom metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory jícnu imunologie metabolismus MeSH
- regulace genové exprese u nádorů genetika MeSH
- senioři MeSH
- skvamózní karcinom jícnu MeSH
- tumor infiltrující lymfocyty imunologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD47 MeSH
- CD47 protein, human MeSH Prohlížeč
Similarly to other types of malignant tumours, the incidence of head and neck cancer is increasing globally. It is frequently associated with smoking and alcohol abuse, and in a broader sense also with prolonged exposure to these factors during ageing. A higher incidence of tumours observed in younger populations without a history of alcohol and tobacco abuse may be due to HPV infection. Malignant tumours form an intricate ecosystem of cancer cells, fibroblasts, blood/lymphatic capillaries and infiltrating immune cells. This dynamic system, the tumour microenvironment, has a significant impact on the biological properties of cancer cells. The microenvironment participates in the control of local aggressiveness of cancer cells, their growth, and their consequent migration to lymph nodes and distant organs during metastatic spread. In cancers originating from squamous epithelium, a similarity was demonstrated between the cancer microenvironment and healing wounds. In this review, we focus on the specificity of the microenvironment of head and neck cancer with emphasis on the mechanism of intercellular crosstalk manipulation for potential therapeutic application.
- Klíčová slova
- IL-6, cancer, cancer ecosystem, cancer microenvironment, cancer therapy, cancer-associated fibroblast, cytokine, extracellular matrix, tumour-associated macrophages,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Upregulated Wnt/β-catenin signaling is associated with increased cancer cell resistance and cancer cell-elicited immunosuppression. In non-neoplastic immune cells, upregulated Wnt/β-catenin is, however, associated with either immunosuppression or immunostimulation. Therefore, it is difficult to predict the therapeutic impact inhibitors of Wnt/β-catenin signaling will have when combined with cancer immunotherapy. Here, we evaluated the benefit(s) of the Wnt/β-catenin signaling inhibitor XAV939 in the in vitro elimination of LNCaP prostate cancer cells when cocultured with lymphocytes from patients with localized biochemically recurrent prostate cancer (BRPCa). We found that 5 µM XAV939 inhibited β-catenin translocation to the nucleus in LNCaP cells and CD4+ BRPCa lymphocytes without affecting their proliferation and viability. Preconditioning BRPCa lymphocytes with 5 µM XAV939 accelerated the elimination of LNCaP cells during the coculturing. However, during subsequent re-coculturing with fresh LNCaP cells, BRPCa lymphocytes were no longer able to eliminate LNCaP cells unless coculturing and re-coculturing were performed in the presence of 5 µM XAV939. Comparable results were obtained for PC-3 prostate cancer cells. These findings provide a rationale for combining cell-based immunotherapy of PCa with inhibitors of Wnt/β-catenin signaling.
- MeSH
- beta-katenin antagonisté a inhibitory metabolismus MeSH
- buňky PC-3 MeSH
- CD4-pozitivní T-lymfocyty účinky léků imunologie MeSH
- heterocyklické sloučeniny tricyklické farmakologie MeSH
- imunoterapie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty farmakoterapie genetika patologie MeSH
- proteiny Wnt antagonisté a inhibitory metabolismus MeSH
- protinádorové látky farmakologie MeSH
- senioři MeSH
- signální dráha Wnt účinky léků MeSH
- T-lymfocyty cytologie imunologie MeSH
- tankyrasy antagonisté a inhibitory MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-katenin MeSH
- CTNNB1 protein, human MeSH Prohlížeč
- heterocyklické sloučeniny tricyklické MeSH
- proteiny Wnt MeSH
- protinádorové látky MeSH
- tankyrasy MeSH
- XAV939 MeSH Prohlížeč