Most cited article - PubMed ID 30857296
Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution
The genus Chenopodium L. is characterized by its wide geographic distribution and ecological adaptability. Species such as quinoa (Chenopodium quinoa Willd.) have served as domesticated staple crops for centuries. Wild Chenopodium species exhibit diverse niche adaptations and are important genetic reservoirs for beneficial agronomic traits, including disease resistance and climate hardiness. To harness the potential of the wild taxa for crop improvement, we developed a Chenopodium pangenome through the assembly and comparative analyses of 12 Chenopodium species that encompass the eight known genome types (A-H). Six of the species are new chromosome-scale assemblies, and many are polyploids; thus, a total of 20 genomes were included in the pangenome analyses. We show that the genomes vary dramatically in size with the D genome being the smallest (∼370 Mb) and the B genome being the largest (∼700 Mb) and that genome size was correlated with independent expansions of the Copia and Gypsy LTR retrotransposon families, suggesting that transposable elements have played a critical role in the evolution of the Chenopodium genomes. We annotated a total of 33,457 pan-Chenopodium gene families, of which ∼65% were classified as shell (2% private). Phylogenetic analysis clarified the evolutionary relationships among the genome lineages, notably resolving the taxonomic placement of the F genome while highlighting the uniqueness of the A genome in the Western Hemisphere. These genomic resources are particularly important for understanding the secondary and tertiary gene pools available for the improvement of the domesticated chenopods while furthering our understanding of the evolution and complexity within the genus.
- MeSH
- Chenopodium * genetics MeSH
- Genome Size MeSH
- Phylogeny MeSH
- Genome, Plant * MeSH
- Terminal Repeat Sequences * genetics MeSH
- Evolution, Molecular * MeSH
- Retroelements MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Retroelements MeSH
Acanthocephalan parasites are often overlooked in many areas of research, and satellitome and cytogenetic analyzes are no exception. The species of the genus Acanthocephalus are known for their very small chromosomes with ambiguous morphology, which makes karyotyping difficult. In this study, we performed the first satellitome analysis of three Acanthocephalus species to identify species- and chromosome-specific satellites that could serve as cytogenetic markers. RepeatExplorer2 revealed a remarkably high number of species-specific repeats, with a predominance of satellite DNAs, alongside variations in repetitive content between sexes. Five satellites in A. anguillae, two in A. lucii and six in A. ranae were successfully mapped to chromosomes using FISH. Each satellite showed a clustered hybridization signal at specific chromosomal locations, which allowed us to create a schematic representation of the distribution of satellites for each species. These newly identified satellites proved to be useful chromosomal markers for the accurate identification of homologous chromosome pairs. No FISH-positive signals were observed on the supernumerary chromosomes of A. anguillae and A. lucii, supporting the hypothesis that these chromosomes have recent origin.
- Keywords
- Acanthocephala, Fluorescence in situ hybridization, Repeat, RepeatExplorer2, Satellite DNA,
- MeSH
- Acanthocephala * genetics classification MeSH
- Chromosomes genetics MeSH
- Species Specificity MeSH
- Genetic Markers MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotyping MeSH
- DNA, Satellite * genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Genetic Markers MeSH
- DNA, Satellite * MeSH
BACKGROUND: Telomeres are the nucleoprotein complexes that physically cap the ends of eukaryotic chromosomes. Most plants possess Arabidopsis-type telomere sequences (TSs). In addition to terminal TSs, more diverse interstitial TSs exists in plants. Although telomeres have been sufficiently studied, the actual diversity of TSs in land plants is underestimated. RESULTS: We investigate genotypes from seven natural populations with contrasting environments of four Chenopodium species to reveal the variability in TSs by analyzing Oxford Nanopore reads. Fluorescent in situ hybridization was used to localize telomeric repeats on chromosomes. We identified a number of derivative monomers that arise in part of both terminal and interstitial telomeric arrays of a single genotype. The former presents a case of block-organized double-monomer telomers, where blocks of Arabidopsis-type TTTAGGG motifs were interspersed with blocks of derivative TTTAAAA motifs. The latter is an integral part of the satellitome with transformations specific to the inactive genome fraction. CONCLUSIONS: We suggested two alternative models for the possible formation of derivative monomers from telomeric heptamer motifs of Arabidopsis-type. It was assumed that derivatization of TSs is a ubiquitous process in the plant genome but occurrence and frequencies of derivatives may be genotype-specific. We also propose that the formation of non-canonical arrays of TSs, especially at chromosomal termini, may be a source for genomic variability in nature.
- Keywords
- Evolution, Oxford nanopore sequencing, Plant, Population, Species, Telomere,
- MeSH
- Arabidopsis * genetics MeSH
- Eukaryota MeSH
- Genotype MeSH
- In Situ Hybridization, Fluorescence MeSH
- Humans MeSH
- Telomere genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
- Keywords
- Festuca, Lolium, fluorescent in situ hybridization, genome dominance, genomic in situ hybridization, internal transcribed spacer, nucleolar dominance, ribosomal DNA,
- Publication type
- Journal Article MeSH
BACKGROUND: CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. RESULTS: Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. CONCLUSIONS: Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome.
- Keywords
- CACTA transposons, Chenopodium, Flowering plants, Genome evolution, Next generation sequencing,
- Publication type
- Journal Article MeSH
Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome. Highly variable satDNA is involved in various genome functions, and a clear link between satellites and phenotypes exists in a wide range of organisms. However, little is known about the origin and temporal dynamics of satDNA. The "library hypothesis" indicates that the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although this hypothesis has received some confirmation, a number of its aspects are still controversial. A recently developed next-generation sequencing (NGS) method allows the determination of the satDNA landscape and could shed light on unresolved issues. Here, we explore low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid species of the Chenopodium album aggregate. The application of the Illumina read assembly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ hybridization allowed the estimation of eight satDNA families within the studied group, six of which were newly described. The obtained set of satDNA families of different origins can be divided into several categories, namely group-specific, lineage-specific and species-specific. In the process of evolution, satDNA families can be transmitted vertically and can be eliminated over time. Moreover, transposable element-derived satDNA families may appear repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained data refute the "library hypothesis", rather than confirming it, and in our opinion, it is more appropriate to speak about "the library of the mechanisms of origin".
- MeSH
- Chenopodium album genetics growth & development MeSH
- Diploidy * MeSH
- DNA, Plant analysis genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Genome, Plant * MeSH
- Gene Library MeSH
- Evolution, Molecular * MeSH
- DNA, Satellite analysis genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA, Satellite MeSH
Extensive and complex links exist between transposable elements (TEs) and satellite DNA (satDNA), which are the two largest fractions of eukaryotic genome. These relationships have a crucial effect on genome structure, function and evolution. Here, we report a novel case of mutual relationships between TEs and satDNA. In the genomes of Chenopodium s. str. species, the deletion derivatives of tnp2 conserved domain of the newly discovered CACTA-like TE Jozin are involved in generating monomers of the most abundant satDNA family of the Chenopodium satellitome. The analysis of the relative positions of satDNA and different TEs utilizing assembled Illumina reads revealed several associations between satDNA arrays and the transposases of putative CACTA-like elements when an ~ 40 bp fragment of tnp2 served as the start monomer of the satDNA array. The high degree of identity of the consensus satDNA monomers of the investigated species and the tnp2 fragment (from 82.1 to 94.9%) provides evidence of the genesis of CficCl-61-40 satDNA family monomers from analogous regions of their respective parental elements. The results were confirmed via molecular genetic methods and Oxford Nanopore sequencing. The discovered phenomenon leads to the continuous replenishment of species genomes with new identical satDNA monomers, which in turn may increase species satellitomes similarity.
- Keywords
- CACTA transposons, Chenopodium, Next generation sequencing, Oxford Nanopore sequencing, Satellite DNA, Transposase,
- Publication type
- Journal Article MeSH
PREMISE: Microsatellite markers were developed for the perennial herb Salvia pratensis (Lamiaceae), a species representative of European dry grasslands. The development of microsatellite markers is needed for genetic and phylogeographical studies of species from the genus Salvia. METHODS AND RESULTS: We used low-coverage Illumina sequencing to identify microsatellite loci. Based on these data, we have developed 18 polymorphic microsatellite markers with the number of alleles per locus ranging from two to 15. The levels of observed and expected heterozygosity ranged from 0.05 to 0.95 and from 0.05 to 0.89, respectively. The majority of the markers successfully cross-amplified in other Salvia species. CONCLUSIONS: The markers were shown to be suitable for population genetic and phylogeographic studies in S. pratensis as well as in related species (S. aethiopis, S. austriaca, S. glutinosa, S. nemorosa, S. nutans, and S. verticillata) and will be used in the broader context to trace the origins of European dry grasslands.
- Keywords
- Lamiaceae, Salvia pratensis, microsatellites, phylogeography,
- Publication type
- Journal Article MeSH
PREMISE: Polymorphic microsatellite markers were developed as a tool for genetic investigations of Filipendula vulgaris (Rosaceae) and related species. METHODS AND RESULTS: Seventeen new polymorphic microsatellite markers were developed for F. vulgaris using the Illumina MiSeq platform. Polymorphism of the 17 loci was tested in three populations. We identified a total of 203 alleles, ranging from four to 19 per locus, with levels of observed and expected heterozygosity ranging from 0.267 to 1.000 and 0.461 to 0.899, respectively. Primers were also tested for cross-amplification in three related species. Seven loci successfully cross-amplified in F. camtschatica and F. ulmaria, whereas we detected positive cross-amplification in only three loci in Geum urbanum. CONCLUSIONS: The newly developed microsatellite primers will serve as useful genetic tools for further population genetic studies on F. vulgaris and related species.
- Keywords
- Filipendula vulgaris, Rosaceae, cross‐amplification, microsatellites, perennial herb,
- Publication type
- Journal Article MeSH