Nejvíce citovaný článek - PubMed ID 31217247
The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A
Avian leukosis virus (ALV), the prototypical alpharetrovirus, causes tumorigenesis, immunosuppression, and wasting disease in poultry. The ALV genus is classified into ten subgroups, which differ in their host range, cell tropism, and receptor usage. The subgroups A, B, K, and J cause significant economic losses worldwide. The most recently discovered subgroup, ALV-K, which is now widespread in China, has been shown to use the tva cell receptor and share it with ALV-A. However, the specific amino acid residues crucial for ALV-K host cell entry remain unknown. Using precise tva expression and chimeric tva receptors, we further elucidated the significance of the cysteine-rich domain in mediating interactions with both ALV-A and ALV-K. Through a comprehensive analysis of mutated tva receptor variants, we pinpointed tryptophan at position 33 (W33) as a pivotal amino acid residue essential for ALV-K virus binding and entry. Of note is the finding that the substitution of W33 induced resistance to ALV-K while preserving sensitivity to ALV-A. This study not only represents an advance in the understanding of the specificity of the tva receptor for ALV-K, but also offers a biotechnological strategy for the prevention of ALV-K infections in poultry.
- Klíčová slova
- avian leukosis virus, chicken, guineafowl, tva receptor,
- MeSH
- buněčné linie MeSH
- internalizace viru * MeSH
- kur domácí MeSH
- nemoci drůbeže virologie MeSH
- přichycení viru * MeSH
- ptačí leukóza virologie MeSH
- substituce aminokyselin MeSH
- virové receptory * genetika metabolismus chemie MeSH
- virus ptačí leukózy * fyziologie genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ptačí proteiny MeSH
- Tva receptor MeSH Prohlížeč
- virové receptory * MeSH
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
- Klíčová slova
- carcinogenesis, chorioallantoic membrane, hen model, oncoviruses, ovarian cancer,
- MeSH
- karcinogeneze * patologie genetika MeSH
- kur domácí MeSH
- kuřecí embryo MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- nádory patologie genetika MeSH
- ptáci MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
- MeSH
- CRISPR-Cas systémy MeSH
- editace genu MeSH
- fibroblasty virologie metabolismus MeSH
- kur domácí * virologie MeSH
- kuřecí embryo MeSH
- molekulární evoluce MeSH
- nemoci drůbeže virologie genetika MeSH
- odolnost vůči nemocem genetika MeSH
- proteiny virového obalu genetika metabolismus MeSH
- ptačí leukóza * virologie genetika MeSH
- virus ptačí leukózy * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny virového obalu MeSH
The Czech Republic, a part of the former Czechoslovakia, has been at the forefront of several research directions in virology, genetics and physiology [...].
- MeSH
- virologie * MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodníky MeSH
- Geografické názvy
- Česká republika MeSH
The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva -/- chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/- siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.
- Klíčová slova
- avian leukosis virus subgroups A/K, gene editing in chicken, tva, vitamin B12/cobalamin,
- MeSH
- editace genu MeSH
- genový knockout MeSH
- kur domácí virologie MeSH
- kuřecí embryo MeSH
- kyselina methylmalonová krev MeSH
- posunová mutace MeSH
- ptačí proteiny genetika fyziologie MeSH
- virové receptory genetika fyziologie MeSH
- virus ptačí leukózy klasifikace fyziologie MeSH
- vitamin B 12 metabolismus MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina methylmalonová MeSH
- ptačí proteiny MeSH
- Tva receptor MeSH Prohlížeč
- virové receptory MeSH
- vitamin B 12 MeSH
The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.
- Publikační typ
- časopisecké články MeSH
It has now been more than two years since we said our last goodbye to Jan Svoboda (14 [...].
- MeSH
- lidé MeSH
- Retroviridae klasifikace genetika izolace a purifikace fyziologie MeSH
- retrovirové infekce virologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodní články MeSH
- úvodníky MeSH