Most cited article - PubMed ID 31434289
Chromosomics: Bridging the Gap between Genomes and Chromosomes
Reproduction is a fundamental aspect of life that affects all levels of biology, from genomes and development to population dynamics and diversification. The first Tree of Sex database synthesized a vast diversity of reproductive strategies and their intriguing distribution throughout eukaryotes. A decade on, we are reviving this initiative and greatly expanding its scope to provide the most comprehensive integration of knowledge on eukaryotic reproduction to date. In this perspective, we first identify important gaps in our current knowledge of reproductive strategies across eukaryotes. We then highlight a selection of questions that will benefit most from this new Tree of Sex project, including those related to the evolution of sex, modes of sex determination, sex chromosomes, and the consequences of various reproductive strategies. Finally, we outline our vision for the new Tree of Sex database and the consortium that will create it (treeofsex.org). The new database will cover all Eukaryota and include a wide selection of biological traits. It will also incorporate genomic data types that were scarce or non-existent at the time of the first Tree of Sex initiative. The new database will be publicly accessible, stable, and self-sustaining, thus greatly improving the accessibility of reproductive knowledge to researchers across disciplines for years to come. Lastly, the consortium will persist after the database is created to serve as a collaborative framework for research, prioritizing ethical standards in the collection, use, and sharing of reproductive data. The new Tree of Sex consortium is open, and we encourage all who are interested in this topic to join us.
BACKGROUND/OBJECTIVES: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. METHODS: Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). RESULTS AND CONCLUSIONS: New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22-40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida.
- Keywords
- Ricinulei, heterochromatin, holocentric, nucleolus organizer region, polyploidy, sex chromosome, solifuge, somatic pairing, spider, telomere,
- MeSH
- Phylogeny MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype * MeSH
- Karyotyping MeSH
- Evolution, Molecular * MeSH
- Arachnida * genetics classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS: Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS: Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.
- Keywords
- Library hypothesis, Repetitive DNA, Reptiles,
- MeSH
- Alligators and Crocodiles * genetics MeSH
- Chromosomes MeSH
- Genomics MeSH
- Evolution, Molecular MeSH
- DNA, Satellite * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Satellite * MeSH
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
- MeSH
- Y Chromosome MeSH
- Phylogeny MeSH
- In Situ Hybridization, Fluorescence MeSH
- Sex Chromosomes genetics MeSH
- Catfishes * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Although interest in Acanthocephala seems to have reached only a small community of researchers worldwide, we show in this opinion article that this group of parasites is composed of excellent model organisms for studying key questions in parasite molecular biology and cytogenetics, evolutionary ecology, and ecotoxicology. Their shared ancestry with free-living rotifers makes them an ideal group to explore the origins of the parasitic lifestyle and evolutionary drivers of host shifts and environmental transitions. They also provide useful features in the quest to decipher the proximate mechanisms of parasite-induced phenotypic alterations and better understand the evolution of behavioral manipulation. From an applied perspective, acanthocephalans' ability to accumulate contaminants offers useful opportunities to monitor the impacts - and evaluate the possible mitigation - of anthropogenic pollutants on aquatic fauna and develop the environmental parasitology framework. However, exploring these exciting research avenues will require connecting fragmentary knowledge by enlarging the taxonomic coverage of molecular and phenotypic data. In this opinion paper, we highlight the needs and opportunities of research on Acanthocephala in three main directions: (i) integrative taxonomy (including non-molecular tools) and phylogeny-based comparative analysis; (ii) ecology and evolution of life cycles, transmission strategies and host ranges; and (iii) environmental issues related to global changes, including ecotoxicology. In each section, the most promising ideas and developments are presented based on selected case studies, with the goal that the present and future generations of parasitologists further explore and increase knowledge of Acanthocephala.
TITLE: Accrocher la communauté scientifique à des vers à la tête pleine d’épines : faits intéressants et passionnants, lacunes dans les connaissances et perspectives pour des orientations de recherche sur les Acanthocéphales. ABSTRACT: Bien que l’intérêt pour les acanthocéphales semble n’avoir atteint qu’un petit nombre de chercheurs dans le monde, nous montrons dans cet article que ce groupe de parasites est composé d’excellents organismes modèles pour étudier les questions en suspens en biologie moléculaire et cytogénétique, écologie évolutive et écotoxicologie. Leur ascendance partagée avec les rotifères en fait un groupe idéal pour explorer les origines du mode de vie parasitaire et les moteurs évolutifs des changements d’hôtes et des transitions environnementales. Ils présentent également des caractéristiques intéressantes pour l’étude des mécanismes proximaux sous-tendant les altérations phénotypiques induites par les parasites, et ainsi mieux comprendre l’évolution de la manipulation comportementale. D’un point de vue appliqué, la capacité des acanthocéphales à accumuler les contaminants offre des opportunités utiles pour surveiller les impacts - et évaluer les possibilités d’atténuation - des pollutions anthropiques sur la faune aquatique et développer le domaine de la parasitologie environnementale. Cependant, l’exploration de ces pistes de recherche passionnantes nécessitera de relier des connaissances fragmentaires en élargissant la couverture taxonomique des données moléculaires et phénotypiques. Dans cet article, nous présentons l’état actuel de la recherche sur les acanthocéphales selon trois axes principaux : (i) la taxonomie intégrative (y compris les outils non-moléculaires) et la phylogénie à des fins d’analyse comparative ; (ii) l’écologie et l’évolution des cycles de vie, des stratégies d’exploitation des hôtes et de transmission ; (iii) les questions environnementales liées aux changements globaux, y compris l’écotoxicologie. Dans chaque section, nous soulignons les besoins et les opportunités, en espérant que cela incitera une nouvelle génération de parasitologues à s’intéresser aux acanthocéphales.
- Keywords
- Acanthocephala, Environmental parasitology, Host ranges, Integrative taxonomy, Transmission strategies,
- MeSH
- Acanthocephala * genetics MeSH
- Phylogeny MeSH
- Parasites * MeSH
- Rotifera * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Fluorescence in situ hybridization (FISH) allows identification of particular chromosomes and their rearrangements. Using FISH with signal enhancement via antibody amplification and enzymatically catalysed reporter deposition, we evaluated applicability of universal cytogenetic markers, namely 18S and 5S rDNA genes, U1 and U2 snRNA genes, and histone H3 genes, in the study of the karyotype evolution in moths and butterflies. Major rDNA underwent rather erratic evolution, which does not always reflect chromosomal changes. In contrast, the hybridization pattern of histone H3 genes was well conserved, reflecting the stable organisation of lepidopteran genomes. Unlike 5S rDNA and U1 and U2 snRNA genes which we failed to detect, except for 5S rDNA in a few representatives of early diverging lepidopteran lineages. To explain the negative FISH results, we used quantitative PCR and Southern hybridization to estimate the copy number and organization of the studied genes in selected species. The results suggested that their detection was hampered by long spacers between the genes and/or their scattered distribution. Our results question homology of 5S rDNA and U1 and U2 snRNA loci in comparative studies. We recommend the use of histone H3 in studies of karyotype evolution.
- MeSH
- Cytogenetic Analysis methods MeSH
- Genome MeSH
- In Situ Hybridization, Fluorescence MeSH
- Chromosome Mapping MeSH
- Evolution, Molecular * MeSH
- Butterflies genetics MeSH
- Moths genetics MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Small Nuclear genetics MeSH
- RNA, Ribosomal, 18S genetics MeSH
- RNA, Ribosomal, 5S genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- RNA, Small Nuclear MeSH
- RNA, Ribosomal, 18S MeSH
- RNA, Ribosomal, 5S MeSH
- U2 small nuclear RNA MeSH Browser
Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes. All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae. In most previous studies of these sex chromosomes, the focus has been on Australian species from the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages. However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive rearrangements and reveals a complex history of sequences leading to their association with important biological processes such as the evolution of sex chromosomes and sex determination.
- Keywords
- BACs, FISH, agamid lizards, evolution, sex chromosomes, synteny,
- MeSH
- Sex Determination Analysis methods MeSH
- Cytogenetics methods MeSH
- Snakes genetics growth & development MeSH
- Lizards genetics growth & development MeSH
- Karyotyping MeSH
- Evolution, Molecular * MeSH
- Sex Chromosomes genetics MeSH
- Sex Determination Processes genetics MeSH
- Synteny genetics MeSH
- Chromosomes, Artificial, Bacterial genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
- Keywords
- FISH, ITRs, ITSs, evolution, in situ hybridization, interstitial telomeric repeats, interstitial telomeric sequences, karyotype, telomeres, turtles,
- MeSH
- Centromere genetics MeSH
- Snakes genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Lizards genetics MeSH
- Karyotype MeSH
- Sex Chromosomes genetics MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- Telomere genetics MeSH
- Turtles genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.
- Keywords
- C-banding, FISH, GATA, evolution, heterochromatin, karyotype, microsatellites, sex chromosomes, telomeres,
- MeSH
- Chromosomes genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Heterochromatin genetics ultrastructure MeSH
- In Situ Hybridization, Fluorescence MeSH
- Lizards genetics MeSH
- Karyotype MeSH
- Microsatellite Repeats genetics MeSH
- Evolution, Molecular * MeSH
- Nucleotide Motifs MeSH
- Sex Chromosomes genetics MeSH
- Chromosome Banding MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Telomere genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Heterochromatin MeSH