Most cited article - PubMed ID 31652684
Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires
The impact of manufacturing strategies on the development of residual stresses in Dievar steel is presented. Two fabrication methods were investigated: conventional ingot casting and selective laser melting as an additive manufacturing process. Subsequently, plastic deformation in the form of hot rotary swaging at 900 °C was applied. Residual stresses were measured using neutron diffraction. Microstructural and phase analysis, precipitate characterization, and hardness measurement-carried out to complement the investigation-showed the microstructure improvement by rotary swaging. The study reveals that the manufacturing method has a significant effect on the distribution of residual stresses in the bars. The results showed that conventional ingot casting resulted in low levels of residual stresses (up to ±200 MPa), with an increase in hardness after rotary swaging from 172 HV1 to 613 HV1. SLM-manufactured bars developed tensile hoop and axial residual stresses in the vicinity of the surface and large compressive axial stresses (-600 MPa) in the core due to rapid cooling. The subsequent thermomechanical treatment via rotary swaging effectively reduced both the surface tensile (to approximately +200 MPa) and the core compressive residual stresses (to -300 MPa). Moreover, it resulted in a predominantly hydrostatic stress character and a reduction in von Mises stresses, offering relatively favorable residual stress characteristics and, therefore, a reduction in the risk of material failure. In addition to the significantly improved stress profile, rotary swaging contributed to a fine grain (3-5 µm instead of 10-15 µm for the conventional sample) and increased the hardness of the SLM samples from 560 HV1 to 606 HV1. These insights confirm the utility of rotary swaging as a post-processing technique that not only reduces residual stresses but also improves the microstructural and mechanical properties of additively manufactured components.
- Keywords
- Dievar, SLM, additive manufacturing, hot work tool steel, neutron diffraction, residual stress, rotary swaging, selective laser melting, tool steel,
- Publication type
- Journal Article MeSH
Rotary swaging is an industrially applicable intensive plastic deformation method. Due to its versatility, it is popular, especially in the automotive industry. Similar to the well-known methods of severe plastic deformation (SPD), rotary swaging imparts high shear strain into the swaged materials and thus introduces grain refinement down to a very fine, even ultra-fine, level. However, contrary to SPD methods, one of the primary characteristics of which is that they retain the shapes and dimensions of the processed sample, rotary swaging enables the imparting of required shapes and dimensions of workpieces (besides introducing structure refinement and the consequent enhancement of properties and performance). Therefore, under optimized conditions, swaging can be used to process workpieces of virtually any metallic material with theoretically any required dimensions. The main aim of this review is to present the principle of the rotary swaging method and its undeniable advantages. The focus is primarily on assessing its pros and cons by evaluating the imparted microstructures.
- Keywords
- grain size, intensive plastic deformation, microstructure, rotary swaging,
- Publication type
- Journal Article MeSH
- Review MeSH
Copper generally exhibits high electrical conductivity but has poor mechanical properties. Although alloying can improve the latter characteristic, it usually leads to a decrease in electrical conductivity. To address this issue, a promising approach is to enhance the performance of copper while maintaining high electrical conductivity through optimized deformation processing, which refines the structure and increases mechanical properties. This paper focuses on assessing the effects of rotary swaging, a form of deformation processing, on microstructures and substructures of electroconductive copper bars. This analysis is complemented by experimental measurements of electrical conductivity. The results demonstrate that gradual swaging, i.e., applying different swaging ratios, influences the structure-forming processes and consequently affects the electrical conductivity. The increased electrical conductivity was found to be associated with the elongation of the grains in the direction of the electron movement.
- Keywords
- EBSD, copper, electrical conductivity, microstructure, rotary swaging, texture,
- Publication type
- Journal Article MeSH
Thermomechanical processing combining plastic deformation and heat treatment is a favorable way to enhance the performance and lifetime of bimetallic laminates, especially those consisting of metals, which tend to form intermetallic layers on the interfaces when produced using methods involving increased temperatures. The presented work focuses on optimizing the conditions of thermomechanical treatment for an Al + Cu bimetallic laminate of innovative design involving a shear-strain-based deformation procedure (rotary swaging) and post-process heat treatment in order to acquire microstructures providing advantageous characteristics during the transfer of direct and alternate electric currents. The specific electric resistivity, as well as microhardness, was particularly affected by the structural features, e.g., grain size, the types of grain boundaries, and grain orientations, which were closely related to the applied thermomechanical procedure. The microhardness increased considerably after swaging (up to 116 HV02 for the Cu components), but it decreased after the subsequent heat treatment at 350 °C. Nevertheless, the heat-treated laminates still featured increased mechanical properties. The measured electric characteristics for DC transfer were the most favorable for the heat-treated 15 mm bimetallic laminate featuring the lowest measured specific electric resistivity of 22.70 × 10-9 Ωm, while the 10 mm bimetallic laminates exhibited advantageous behavior during AC transfer due to a very low power loss coefficient of 1.001.
- Keywords
- bimetallic laminate, electric conductivity, microhardness, microstructure, rotary swaging,
- Publication type
- Journal Article MeSH
Rotary swaging is a promising technique for the fabrication of clad Cu/Al composites. Residual stresses appearing during the processing of a special arrangement of Al filaments within the Cu matrix and the influence of the bar reversal between the passes were studied by (i) neutron diffraction using a novel evaluation procedure for pseudo-strain correction and (ii) a finite element method simulation. The initial study of the stress differences in the Cu phase allowed us to infer that the stresses around the central Al filament are hydrostatic when the sample is reversed during the passes. This fact enabled the calculation of the stress-free reference and, consequently, the analysis of the hydrostatic and deviatoric components. Finally, the stresses with the von Mises relation were calculated. Hydrostatic stresses (far from the filaments) and axial deviatoric stresses are zero or compressive for both reversed and non-reversed samples. The reversal of the bar direction slightly changes the overall state within the region of high density of Al filaments, where hydrostatic stresses tend to be tensile, but it seems to be advantageous for avoiding plastification in the regions without Al wires. The finite element analysis revealed the presence of shear stresses; nevertheless, stresses calculated with the von Mises relation show similar trends in the simulation and in the neutron measurements. Microstresses are suggested as a possible reason for the large width of the neutron diffraction peak in the measurement of the radial direction.
- Keywords
- aluminum, composite, copper, finite element simulation, neutron diffraction, residual stress, rotary swaging, severe plastic deformation, von Mises,
- Publication type
- Journal Article MeSH