Nejvíce citovaný článek - PubMed ID 31891233
TRY plant trait database - enhanced coverage and open access
Polyploidy and subsequent post-polyploid diploidization (PPD) are key drivers of plant genome evolution, yet their contributions to evolutionary success remain debated. Here, we analyze the Malvaceae family as an exemplary system for elucidating the evolutionary role of polyploidy and PPD in angiosperms, leveraging 11 high-quality chromosome-scale genomes from all nine subfamilies, including newly sequenced, near telomere-to-telomere assemblies from four of these subfamilies. Our findings reveal a complex reticulate paleoallopolyploidy history early in the diversification of the Malvadendrina clade, characterized by multiple rounds of species radiation punctuated by ancient allotetraploidization (Mal-β) and allodecaploidization (Mal-α) events around the Cretaceous-Paleogene (K-Pg) boundary. We further reconstruct the evolutionary dynamics of PPD and find a strong correlation between dysploidy rate and taxonomic richness of the paleopolyploid subfamilies (R2 ≥ 0.90, P < 1e-4), supporting the "polyploidy for survival and PPD for success" hypothesis. Overall, our study provides a comprehensive reconstruction of the evolutionary history of the Malvaceae and underscores the crucial role of polyploidy-dysploidy waves in shaping plant biodiversity.
- Publikační typ
- časopisecké články MeSH
Humans have spread plants globally for millennia, inadvertently causing ecological disruptions. Apart from their negative effects, biological invasions provide a unique opportunity to study how species modify their niche when confronted with novel environments. Focusing on the Mediterranean Basin, we assessed (1) which traits influence niche dynamics, and (2) whether niche conservatism or niche shift promotes invasion success. We selected the 80 most widespread alien vascular plant species in Mediterranean Europe and compiled data on their distributions in their native and invaded ranges. We then tested how a species' residence time, biogeographic origin, dispersal ability, functional traits, and intraspecific trait variability (ITV) influence its niche dynamics following invasion. Using already published independent data, we finally assessed whether niche dynamics can explain different dimensions of invasion success (quantified as regional spread or local abundance). We found that niche shifts were common (71% of species) and were mostly driven by species failing to occupy all suitable environments in their invaded range (unfilling), regardless of residence time. Niche unfilling and niche expansion were more important in species with high intraspecific trait variability introduced from non-Mediterranean biomes (temperate or tropical). Niche expansion was also greater in species with long-distance dispersal, a narrow native niche, and bigger seeds. Interestingly, invasion success correlated more with a species' ability to conserve its niche and residence time than with niche expansion. Niche shifts were better predicted by species traits than residence time. For example, high adaptive and acclimatization potential (inferred from high intraspecific trait variability) favored niche shifts in general, and long-distance dispersal favored niche expansion. Understanding how these traits relate to niche dynamics is important since a species' ability to conserve and fill its niche is, in turn, a good predictor of invasion success.
- Klíčová slova
- acclimatization, invasion success, invasive species, niche dynamics, niche filling, phenotypic plasticity, rapid adaptation, species traits,
- MeSH
- distribuce rostlin * MeSH
- ekosystém * MeSH
- rostliny * klasifikace MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Středomoří MeSH
Global databases of plant functional traits are facing issues in data heterogeneity and taxonomical or geographical representativeness. To fill data gaps, natural history collections, such as herbaria, have become widely accepted as a potential source of data on functional traits. Surprisingly, root characteristics of plants still have not been studied on herbarium materials. We investigated whether rooting depth data from herbarium samples are realistic enough to be used in ecological studies. We measured original maximum rooting depth records on herbarium specimens and individuals from the field. Global data from the TRY database were also obtained. We tested the pairwise correlations between data from the three datasets. The effect of life form, taxonomic position, and average species height on rooting depth was also evaluated. Herbarium data showed strong correlation to field records, while records from the TRY database showed a weaker correlation with data measured on herbarium materials. Life form, taxonomic position, and height proved to be good predictors of rooting depth collected from the field or the herbarium; however, the model including data obtained from the TRY as the response variable performed weaker. We constructed an equation for predicting realistic average maximum rooting depth values of a given species based on herbarium data. Strong correlation among the field and herbarium datasets suggests that museal collections can be considered as resources of root trait data. Although herbarium-based rooting depth measurements usually represent lower values than field records, the correction of the herbarium-derived dataset is solvable. These corrected data might be more accurate than using large, global trait databases. Herbarium work might be a more sustainable, time- and cost-effective practice than field sampling. The inclusion of herbarium-derived information in trait-based studies, as well as in global databases, can improve these sources spatially, temporally, and taxonomically.
- Klíčová slova
- bias, functional trait, maximum rooting depth, natural history collection, prediction,
- Publikační typ
- časopisecké články MeSH
Trees can differ enormously in their crown architectural traits, such as the scaling relationships between tree height, crown width and stem diameter. Yet despite the importance of crown architecture in shaping the structure and function of terrestrial ecosystems, we lack a complete picture of what drives this incredible diversity in crown shapes. Using data from 374,888 globally distributed trees, we explore how climate, disturbance, competition, functional traits, and evolutionary history constrain the height and crown width scaling relationships of 1914 tree species. We find that variation in height-diameter scaling relationships is primarily controlled by water availability and light competition. Conversely, crown width is predominantly shaped by exposure to wind and fire, while also covarying with functional traits related to mechanical stability and photosynthesis. Additionally, we identify several plant lineages with highly distinctive stem and crown forms, such as the exceedingly slender dipterocarps of Southeast Asia, or the extremely wide crowns of legume trees in African savannas. Our study charts the global spectrum of tree crown architecture and pinpoints the processes that shape the 3D structure of woody ecosystems.
Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
- MeSH
- dřevo MeSH
- druhová specificita MeSH
- ekosystém MeSH
- klimatické změny MeSH
- lesy * MeSH
- podnebí * MeSH
- stromy * fyziologie klasifikace anatomie a histologie MeSH
- teplota MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda MeSH
Tropical forest canopies are the biosphere's most concentrated atmospheric interface for carbon, water and energy1,2. However, in most Earth System Models, the diverse and heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either a singular or a small number of fixed canopy ecophysiological properties3. This situation arises, in part, from a lack of understanding about how and why the functional properties of tropical forest canopies vary geographically4. Here, by combining field-collected data from more than 1,800 vegetation plots and tree traits with satellite remote-sensing, terrain, climate and soil data, we predict variation across 13 morphological, structural and chemical functional traits of trees, and use this to compute and map the functional diversity of tropical forests. Our findings reveal that the tropical Americas, Africa and Asia tend to occupy different portions of the total functional trait space available across tropical forests. Tropical American forests are predicted to have 40% greater functional richness than tropical African and Asian forests. Meanwhile, African forests have the highest functional divergence-32% and 7% higher than that of tropical American and Asian forests, respectively. An uncertainty analysis highlights priority regions for further data collection, which would refine and improve these maps. Our predictions represent a ground-based and remotely enabled global analysis of how and why the functional traits of tropical forest canopies vary across space.
- MeSH
- biodiverzita MeSH
- lesy * MeSH
- listy rostlin fyziologie chemie anatomie a histologie MeSH
- nejistota MeSH
- půda chemie MeSH
- stromy * fyziologie anatomie a histologie chemie klasifikace MeSH
- tropické klima MeSH
- Země (planeta) * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika MeSH
- Asie MeSH
- Názvy látek
- půda MeSH
Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities. Trait-based plant features, especially the prevalence of acquisitive strategies along the leaf-economics spectrum, were the main land-use intensity mediators within and across taxonomic and trophic levels, consistently influencing dominant species variability. Functional diversity also mediated land-use intensity effects but played a lesser role. Our analysis discloses trait-based community features as key mediators of land-use effects on stability drivers, emphasizing the need to consider multi-trophic functional interactions to better understand complex ecosystem dynamics.
- MeSH
- biodiverzita * MeSH
- členovci fyziologie MeSH
- ekosystém * MeSH
- potravní řetězec MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo MeSH
In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records. We focused not only on taxonomic diversity but also on the functional characteristics of communities. Species richness of most habitat types increased over time, and taxonomic and functional community composition shifted significantly. Habitat specialists and threatened species became less represented in plant communities, indicating a decline in habitat quality. The spread of trees, shrubs, tall herbaceous plants, strong competitors, and nutrient-demanding species in all non-forest habitats, coupled with the decline of light-demanding species, suggests an effect of eutrophication and natural succession following the abandonment of traditional management. Moreover, we identified specific trends in certain habitats. In wetlands, springs, and mires, moisture-demanding species decreased, probably due to drainage, river regulations, and increasing drought resulting from climate change. Dry grasslands, ruderal, weed, sand, and shallow-soil vegetation became more mesic, and successional processes were most pronounced in these communities, suggesting a stronger effect of abandonment of traditional management and eutrophication. In alpine and subalpine vegetation, meadows and mesic pastures, and heathlands, insect-pollinated species declined, and the proportion of grasses increased. Overall, these functional changes provide deep insights into the underlying drivers and help conservationists take appropriate countermeasures.
- Klíčová slova
- biodiversity change, drought, eutrophication, functional traits, habitat specialists, mesophilization, succession, vascular plants,
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- rostliny * klasifikace MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems.
- MeSH
- biomasa MeSH
- dřevo * MeSH
- lesy * MeSH
- stromy * růst a vývoj metabolismus MeSH
- uhlík * metabolismus analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík * MeSH
Increasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.
- MeSH
- biomasa MeSH
- dehydratace MeSH
- klimatické změny MeSH
- lesy * MeSH
- listy rostlin MeSH
- podnebí MeSH
- stromy * fyziologie MeSH
- teplota MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Spojené státy americké MeSH
- Názvy látek
- voda MeSH