Nejvíce citovaný článek - PubMed ID 32413319
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
- Klíčová slova
- COVID-19, SARS-CoV-2, Wharton’s jelly, cell-based therapy, cell-free therapy, clinical trials, cytokine storm, extracellular vesicles, inflammatory diseases, mesenchymal stromal cells, umbilical-cord-derived mesenchymal stromal cells,
- MeSH
- COVID-19 * metabolismus MeSH
- cytokiny metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- pandemie MeSH
- placenta metabolismus MeSH
- pupečník MeSH
- SARS-CoV-2 metabolismus MeSH
- těhotenství MeSH
- vakcíny proti COVID-19 MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
- vakcíny proti COVID-19 MeSH
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
- Klíčová slova
- COVID-19, cellular therapies, immunotherapy, severe acute respiratory syndrome coronavirus 2, virus-specific T cells,
- MeSH
- COVID-19 * terapie MeSH
- cytokiny MeSH
- lidé MeSH
- SARS-CoV-2 * MeSH
- syndrom uvolnění cytokinů terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
- Klíčová slova
- Cancer stroma, Granulation tissue, IL-6, Inflammation, Myofibroblast, Peripheral nerve injury, Rheumatoid arthritis, SARS-CoV-2, Wound healing,
- MeSH
- autoimunita MeSH
- autoimunitní nemoci * farmakoterapie MeSH
- COVID-19 * MeSH
- hojení ran MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory * farmakoterapie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accountable for causing the coronavirus diseases 2019 (COVID-19), is already declared as a pandemic disease globally. Like previously reported SARS-CoV strain, the novel SARS-CoV-2 also initiates the viral pathogenesis via docking viral spike-protein with the membranal angiotensin-converting enzyme 2 (ACE2) - a receptor on variety of cells in the human body. Therefore, COVID-19 is broadly characterized as a disease that targets multiple organs, particularly causing acute complications via organ-specific pathogenesis accompanied by destruction of ACE2+ cells, including alveolus, cardiac microvasculature, endothelium, and glomerulus. Under such circumstances, the high expression of ACE2 in predisposing individuals associated with anomalous production of the renin-angiotensin system (RAS) may promote enhanced viral load in COVID-19, which comparatively triggers excessive apoptosis. Furthermore, multi-organ injuries were found linked to altered ACE2 expression and inequality between the ACE2/angiotensin-(1-7)/mitochondrial Ang system (MAS) and renin-angiotensin-system (RAS) in COVID-19 patients. However, the exact pathogenesis of multi-organ damage in COVID-19 is still obscure, but several perspectives have been postulated, involving altered ACE2 expression linked with direct/indirect damages by the virus-induced immune responses, such as cytokinin storm. Thus, insights into the invasion of a virus with respect to ACE2 expression site can be helpful to simulate or understand the possible complications in the targeted organ during viral infection. Hence, this review summarizes the multiple organs invasion by SARS CoV-2 linked with ACE2 expression and their consequences, which can be helpful in the management of the COVID-19 pathogenesis under life-threatening conditions.
- Klíčová slova
- Angiotensin-(1-7), COVID-19, Extrapulmonary manifestation, Multiorgan damage, Pneumonia, SARS-CoV-2,
- MeSH
- angiotensin konvertující enzym metabolismus MeSH
- angiotensin-konvertující enzym 2 MeSH
- COVID-19 * MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 * patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin konvertující enzym MeSH
- angiotensin-konvertující enzym 2 MeSH
The latest outbreak of a coronavirus disease in 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evolved into a worldwide pandemic with massive effects on health, quality of life, and economy. Given the short period of time since the outbreak, there are several knowledge gaps on the comparative and zoonotic aspects of this new virus. Within the One Health concept, the current EAACI position paper dwells into the current knowledge on SARS-CoV-2's receptors, symptoms, transmission routes for human and animals living in close vicinity to each other, usefulness of animal models to study this disease and management options to avoid intra- and interspecies transmission. Similar pandemics might appear unexpectedly and more frequently in the near future due to climate change, consumption of exotic foods and drinks, globe-trotter travel possibilities, the growing world population, the decreasing production space, declining room for wildlife and free-ranging animals, and the changed lifestyle including living very close to animals. Therefore, both the society and the health authorities need to be aware and well prepared for similar future situations, and research needs to focus on prevention and fast development of treatment options (medications, vaccines).
- Klíčová slova
- (reverse) zoonosis, One Health, companion animals and pets, coronavirus, disease transmission,
- MeSH
- COVID-19 * MeSH
- kvalita života MeSH
- lidé MeSH
- One Health * MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this review, we discuss the role of pulmonary surfactant in the host defense against respiratory pathogens, including novel coronavirus SARS-CoV-2. In the lower respiratory system, the virus uses angiotensin-converting enzyme 2 (ACE2) receptor in conjunction with serine protease TMPRSS2, expressed by alveolar type II (ATII) cells as one of the SARS-CoV-2 target cells, to enter. ATII cells are the main source of surfactant. After their infection and the resulting damage, the consequences may be severe and may include injury to the alveolar-capillary barrier, lung edema, inflammation, ineffective gas exchange, impaired lung mechanics and reduced oxygenation, which resembles acute respiratory distress syndrome (ARDS) of other etiology. The aim of this review is to highlight the key role of ATII cells and reduced surfactant in the pathogenesis of the respiratory form of COVID-19 and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS patients.
- MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- COVID-19 imunologie metabolismus virologie MeSH
- farmakoterapie COVID-19 MeSH
- interakce hostitele a patogenu MeSH
- internalizace viru MeSH
- lidé MeSH
- plíce účinky léků imunologie metabolismus virologie MeSH
- plicní surfaktanty terapeutické užití MeSH
- pneumocyty účinky léků imunologie metabolismus virologie MeSH
- proteiny asociované s plicním surfaktantem metabolismus MeSH
- SARS-CoV-2 imunologie patogenita MeSH
- serinové endopeptidasy metabolismus MeSH
- virové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- plicní surfaktanty MeSH
- proteiny asociované s plicním surfaktantem MeSH
- serinové endopeptidasy MeSH
- TMPRSS2 protein, human MeSH Prohlížeč
- virové receptory MeSH
BACKGROUND: Markedly elevated levels of proinflammatory cytokines and defective type-I interferon responses were reported in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to determine whether particular cytokine profiles are associated with COVID-19 severity and mortality. METHODS: Cytokine concentrations and severe acute respiratory syndrome coronavirus 2 antigen were measured at hospital admission in serum of symptomatic patients with COVID-19 (N = 115), classified at hospitalization into 3 respiratory severity groups: no need for mechanical ventilatory support (No-MVS), intermediate severity requiring mechanical ventilatory support (MVS), and critical severity requiring extracorporeal membrane oxygenation (ECMO). Principal-component analysis was used to characterize cytokine profiles associated with severity and mortality. The results were thereafter confirmed in an independent validation cohort (N = 86). RESULTS: At time of hospitalization, ECMO patients presented a dominant proinflammatory response with elevated levels of TNF-α, IL-6, IL-8, and IL-10. In contrast, an elevated type-I interferon response involving IFN-α and IFN-β was characteristic of No-MVS patients, whereas MVS patients exhibited both profiles. Mortality at 1 month was associated with higher levels of proinflammatory cytokines in ECMO patients, higher levels of type-I interferons in No-MVS patients, and their combination in MVS patients, resulting in a combined mortality prediction accuracy of 88.5% (risk ratio, 24.3; P < .0001). Severe acute respiratory syndrome coronavirus 2 antigen levels correlated with type-I interferon levels and were associated with mortality, but not with proinflammatory response or severity. CONCLUSIONS: Distinct cytokine profiles are observed in association with COVID-19 severity and are differentially predictive of mortality according to oxygen support modalities. These results warrant personalized treatment of COVID-19 patients based on cytokine profiling.
- Klíčová slova
- COVID-19, mortality, principal-component analysis, respiratory severity, serum cytokines, type-I interferons,
- MeSH
- COVID-19 * imunologie mortalita terapie MeSH
- cytokiny imunologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- SARS-CoV-2 imunologie MeSH
- senioři MeSH
- stupeň závažnosti nemoci * MeSH
- umělé dýchání * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
- Klíčová slova
- SARS-CoV-2 infection, complement, coronavirus, cytokine storm, immune response, innate immune response, memory cells,
- MeSH
- angiotensin-konvertující enzym 2 genetika metabolismus MeSH
- biologické markery MeSH
- COVID-19 komplikace imunologie metabolismus virologie MeSH
- cytokiny metabolismus MeSH
- energetický metabolismus MeSH
- interakce hostitele a patogenu imunologie MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- náchylnost k nemoci imunologie MeSH
- podskupiny lymfocytů imunologie metabolismus MeSH
- přirozená imunita MeSH
- receptor angiotensinu typ 2 metabolismus MeSH
- replikace viru MeSH
- SARS-CoV-2 fyziologie MeSH
- syndrom uvolnění cytokinů etiologie metabolismus MeSH
- virové receptory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- biologické markery MeSH
- cytokiny MeSH
- mediátory zánětu MeSH
- receptor angiotensinu typ 2 MeSH
- virové receptory MeSH
BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
- Klíčová slova
- COPD, COVID-19, COVID-19 children, SARS receptor, asthma, hypertension, obesity,
- MeSH
- angiotensin-konvertující enzym 2 genetika imunologie MeSH
- basigin genetika imunologie MeSH
- bronchiální astma epidemiologie genetika imunologie MeSH
- chronická nemoc epidemiologie MeSH
- chronická obstrukční plicní nemoc epidemiologie genetika imunologie MeSH
- COVID-19 epidemiologie genetika imunologie MeSH
- dipeptidylpeptidasa 4 genetika imunologie MeSH
- dítě MeSH
- dospělí MeSH
- exprese genu genetika MeSH
- hypertenze epidemiologie genetika imunologie MeSH
- kojenec MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita epidemiologie genetika imunologie MeSH
- předškolní dítě MeSH
- přirozená imunita imunologie MeSH
- rizikové faktory MeSH
- SARS-CoV-2 genetika imunologie MeSH
- senioři MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- basigin MeSH
- BSG protein, human MeSH Prohlížeč
- dipeptidylpeptidasa 4 MeSH
- DPP4 protein, human MeSH Prohlížeč