Nejvíce citovaný článek - PubMed ID 33932339
A cellular and spatial map of the choroid plexus across brain ventricles and ages
The circadian clock in choroid plexus (ChP) controls processes involved in its physiological functions, but the signals that synchronize the clock have been sparsely studied. We found that the ChP clock in the fourthventricle (4V) is more robust than that in the lateral ventricle (LV) and investigated whether both clocks use information about mealtime as a signal to synchronize with the current activity state. Exposure of mPer2Luc mice to a 10-day reverse restricted feeding (rRF) protocol, in which food was provided for 6 h during daytime, advanced the phase of the ChP clock in 4V and LV, as evidenced by shifted (1) PER2-driven bioluminescence rhythms of ChP explants ex vivo and (2) daily profiles in clock gene expression in both ChP tissues in vivo. In contrast, clocks in other brain regions (DMH, ARC, LHb) of the same mice did not shift. The 4V ChP responded more strongly than the LV ChP to rRF by modulating the expression of genes to ensure a decrease in resistance to cerebrospinal fluid drainage and increase the secretory capacity of ChP cells. Mechanistically, rRF affects the ChP clock through food-induced increases in insulin, glucose and temperature levels, as in vitro all three signals significantly shifted the clocks in both ChP tissues, similar to rRF. The effect of glucose was partially blocked by OSMI-1, suggesting involvement of O-linked N-acetylglucosamine posttranslational modification. We identified mechanisms that can signal to the brain the time of feeding and the associated activity state via resetting of the ChP clock.
- Klíčová slova
- Choroid plexus, Circadian clock, Glucose, Insulin, O-GlcNAc, Restricted feeding, Temperature,
- MeSH
- cirkadiánní hodiny * fyziologie genetika MeSH
- cirkadiánní proteiny Period metabolismus genetika MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- regulace genové exprese MeSH
- stravovací zvyklosti * fyziologie MeSH
- ventriculi laterales metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cirkadiánní proteiny Period MeSH
- Per2 protein, mouse MeSH Prohlížeč
BACKGROUND: The choroid plexus (ChP) is the secretory epithelial structure located in the brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of tumor pathology and the limited availability of valid models. METHODS: Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and overexpression of Wnt/β-catenin pathway genes. A 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS: We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knockout of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of the Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelial cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS: Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
- Klíčová slova
- APC, Wnt signaling, brain tumor, choroid plexus organoid, rare childhood cancer,
- MeSH
- beta-katenin * metabolismus genetika MeSH
- karcinogeneze * metabolismus patologie MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- nádory plexus chorioideus * patologie metabolismus genetika MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- signální dráha Wnt * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-katenin * MeSH
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
- Klíčová slova
- mPer2 Luc mouse, Choroid plexus, Circadian clock, Circadian transcriptome, Glucocorticoid, Mouse, Suprachiasmatic nuclei,
- MeSH
- cirkadiánní hodiny * fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus suprachiasmaticus * metabolismus fyziologie MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- transkripční faktory ARNTL metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Bmal1 protein, mouse MeSH Prohlížeč
- transkripční faktory ARNTL MeSH
The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.
- Klíčová slova
- 3D visualization, Hindbrain choroid plexus, Morphometrics, X-ray micro-computed tomography,
- MeSH
- mozek MeSH
- mozkové komory * MeSH
- myši MeSH
- plexus chorioideus * diagnostické zobrazování MeSH
- rentgenová mikrotomografie MeSH
- rombencefalon diagnostické zobrazování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.
- Klíčová slova
- Alzheimer's disease, aging, cerebrospinal fluid, choroid plexus, pathology,
- MeSH
- Alzheimerova nemoc * patologie MeSH
- lidé MeSH
- plexus chorioideus metabolismus patologie MeSH
- proteomika MeSH
- stárnutí MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
- Klíčová slova
- Cerebrospinal fluid (CSF), ChP epithelial cells, Choroid plexus (ChP), Cortical hem, Morphogenesis, Rhombic lips,
- MeSH
- centrální nervový systém * MeSH
- epitelové buňky MeSH
- mozek MeSH
- myši MeSH
- plexus chorioideus * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.
- Klíčová slova
- Choroid plexus, Epithelium, Meis1, Meis2, Morphogenesis, WNT5a,
- MeSH
- buněčné linie MeSH
- CRISPR-Cas systémy genetika MeSH
- čtvrtá mozková komora embryologie MeSH
- epitel metabolismus MeSH
- epitelové buňky metabolismus MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mozek embryologie MeSH
- myši knockoutované MeSH
- myši MeSH
- plexus chorioideus embryologie MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein Wnt 5a genetika metabolismus MeSH
- signální transdukce fyziologie MeSH
- sirotčí receptory podobné receptoru tyrosinkinasy metabolismus MeSH
- transkripční faktor Meis1 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Meis1 protein, mouse MeSH Prohlížeč
- protein Wnt 5a MeSH
- Ror1 protein, mouse MeSH Prohlížeč
- Ror2 protein, mouse MeSH Prohlížeč
- sirotčí receptory podobné receptoru tyrosinkinasy MeSH
- transkripční faktor Meis1 MeSH
- Wnt5a protein, mouse MeSH Prohlížeč
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
- Klíčová slova
- cerebrospinal fluid, choroid plexus, secretion,
- MeSH
- biologický transport fyziologie MeSH
- hematoencefalická bariéra metabolismus MeSH
- lidé MeSH
- plexus chorioideus metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH