Nejvíce citovaný článek - PubMed ID 4194324
Overall staining of connective tissue and the muscular layer of vessels
BACKGROUND: Scleral fixation of intraocular lenses is a surgical technique that involves anchoring an artificial lens to the sclera. Traditional approaches, such as capsular bag placement, may not be feasible in certain situations, making scleral fixation a valuable alternative. The scleral reactions to different types of suture materials are not fully understood. Therefore, the present study describes the microscopic structure of normal scleral tissue and its changes with suture materials. METHODS: We compared six groups of rabbit eyes focusing on the sclera: group with polytetrafluoroethylene (PTFE) chain, PTFE fiber, polypropylene (PPE) fiber and control groups. multilevel sampling and stereological methods were used for histological quantification of the leukocyte infiltration fractions and type I and type III collagen. RESULTS: Quantitative histological evaluation revealed the following: (1) For all materials used, inflammation was present in the surrounding scleral tissue compared with healthy controls. However, leukocyte infiltration in the sclera was not statistically different between the materials. (2) As part of the evaluation of collagen, the greatest changes occurred in the PTFE fiber group at 2 weeks postoperatively. In the PTFE chain group, more significant changes were visible at 4 weeks. (3) The changes in the PPE fiber group compared to healthy scleral tissue were the least significant. CONCLUSIONS: From a histological point of view, it is evident that there are differences in the quantitative parameters between the untouched sclera and the sclera with suture material. Furthermore, distinctions were observed among various materials and across different time intervals.
- Klíčová slova
- histology, rabbit, sclera, scleral fixation of intraocular lens, stereology,
- MeSH
- králíci MeSH
- modely u zvířat MeSH
- polypropyleny škodlivé účinky MeSH
- polytetrafluoroethylen škodlivé účinky MeSH
- skléra * patologie MeSH
- sutura * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- polypropyleny MeSH
- polytetrafluoroethylen MeSH
The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture.
- Klíčová slova
- electrospinning, histological evaluation, polycaprolactone, stereology, vascular graft, vascular remodeling,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: A current topic of ma jor interest in regenerative medicine is the development of novel materials for accelerated healing of sutures, and nanofibers seem to be suitable materials for this purpose. As various studies have shown, nanofibers are able to partially substitute missing extracellular matrix and to stimulate cell proliferation and differentiation in sutures. Therefore, we tested nanofibrous membranes and cryogenically fractionalized nanofibers as potential materials for support of the healing of intestinal anastomoses in a rabbit model. MATERIALS AND METHODS: We compared cryogenically fractionalized chitosan and PVA nanofibers with chitosan and PVA nanofiber membranes designed for intestine anastomosis healing in a rabbit animal model. The anastomoses were biomechanically and histologically tested. RESULTS: In strong contrast to nanofibrous membranes, the fractionalized nanofibers did show positive effects on the healing of intestinal anastomoses in rabbits. The fractionalized nanofibers were able to reach deep layers that are key to increased mechanical strength of the intestine. Moreover, fractionalized nanofibers led to the formation of collagen-rich 3D tissue significantly exceeding the healing effects of the 2D flat nanofiber membranes. In addition, the fractionalized chitosan nanofibers eliminated peritonitis, significantly stimulated anastomosis healing and led to a higher density of microvessels, in addition to a larger fraction of myofibroblasts and collagen type I and III. Biomechanical tests supported these histological findings. CONCLUSION: We concluded that the fractionalized chitosan nanofibers led to accelerated healing for rabbit colorectal anastomoses by the targeted stimulation of collagen-producing cells in the intestine, the smooth muscle cells and the fibroblasts. We believe that the collagen-producing cells were stimulated both directly due to the presence of a biocompatible scaffold providing cell adhesion, and indirectly, by a proper stimulation of immunocytes in the suture.
- Klíčová slova
- collagen, colorectal anastomoses, cryogenic grinding, electrospinning, microvessels,
- MeSH
- chitosan * farmakologie MeSH
- hojení ran MeSH
- kolagen farmakologie MeSH
- králíci MeSH
- nanovlákna * MeSH
- tlusté střevo MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan * MeSH
- kolagen MeSH
The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.
- Klíčová slova
- ECM proteins, endothelial cell adhesion, mechanical properties, optimized decellularization, porcine carotid artery, scaffold quality,
- Publikační typ
- časopisecké články MeSH
Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.
- Klíčová slova
- CD44 antibody, cartilage, collagen, fibrin, microparticles, poly-ε-caprolactone,
- Publikační typ
- časopisecké články MeSH
Information about the tissue characteristics of abdominal aortic aneurysms (AAAs), some of which may be reflected in the serum, can help to elucidate AAA pathogenesis and identify new AAA biomarkers. This information would be beneficial not only for diagnostics and follow-up but also for potential therapeutic intervention. Therefore, the aim of our study was to compare the expression of structural proteins, immune factors (T and B lymphocytes, macrophages, neutrophils and pentraxin 3 (PTX3)), osteoprotegerin (OPG), microvessels and hypoxic cells in AAA and nonaneurysmal aortic walls. We examined specimens collected during surgery for AAA repair (n = 39) and from the abdominal aortas of kidney donors without AAA (n = 8). Using histochemical and immunohistochemical methods, we quantified the areas positive for smooth muscle actin, desmin, elastin, collagen, OPG, CD3, CD20, MAC387, myeloperoxidase, PTX3, and hypoxia-inducible factor 1-alpha and the density of CD31-positive microvessels. AAA samples contained significantly less actin, desmin, elastin and OPG, more collagen, macrophages, neutrophils, T lymphocytes, B lymphocytes, hypoxic cells and PTX3, and a greater density of vasa vasorum (VV) than those in non-AAA samples. Hypoxia positively correlated with actin and negatively correlated with collagen. Microvascular density was related to inflammatory cell infiltrates, hypoxia, PTX3 expression and AAA diameter. The lower OPG expression in AAAs supports the notion of its protective role in AAA remodeling. AAA contained altered amounts of structural proteins, implying reduced vascular elasticity. PTX3 was upregulated in AAA and colocalized with inflammatory infiltrates. This evidence supports further evaluation of PTX3 as a candidate marker of AAA. The presence of aortic hypoxia, despite hypervascularization, suggests that hypoxia-induced neoangiogenesis may play a role in AAA pathogenesis. VV angiogenesis of the AAA wall increases its vulnerability.
- MeSH
- aneurysma břišní aorty etiologie metabolismus patologie MeSH
- biologické markery MeSH
- C-reaktivní protein metabolismus MeSH
- dospělí MeSH
- hypoxie metabolismus MeSH
- imunohistochemie MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- osteoprotegerin metabolismus MeSH
- patologická angiogeneze metabolismus MeSH
- senioři MeSH
- sérový amyloidový protein metabolismus MeSH
- studie případů a kontrol MeSH
- zánět komplikace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- C-reaktivní protein MeSH
- osteoprotegerin MeSH
- PTX3 protein MeSH Prohlížeč
- sérový amyloidový protein MeSH
Bone regeneration is a long-term process requiring proper scaffolding and drug delivery systems. The current study delivers a three-dimensional (3D) scaffold prepared by blend centrifugal spinning loaded with the osteogenic supplements (OS) β-glycerol phosphate, ascorbate-2-phosphate and dexamethasone. The OS were successfully encapsulated into a fibrous scaffold and showed sustained release for 30 days. Furthermore, biological testing showed the osteoinductive properties of the scaffolds on a model of human mesenchymal stem cells and stimulatory effect on a model of osteoblasts. The osteoinductive properties were further proved in vivo in critical size defects of rabbits. The amount of bone trabecules was bigger compared to control fibers without OS. The results indicate that due to its long-term drug releasing properties, single step fabrication process and 3D structure, the system shows ideal properties for use as a cell-free bone implant in tissue-engineering.
- Publikační typ
- časopisecké články MeSH
Incisional hernia affects up to 20% of patients after abdominal surgery. Unlike other types of hernia, its prognosis is poor, and patients suffer from recurrence within 10 years of the operation. Currently used hernia-repair meshes do not guarantee success, but only extend the recurrence-free period by about 5 years. Most of them are nonresorbable, and these implants can lead to many complications that are in some cases life-threatening. Electrospun nanofibers of various polymers have been used as tissue scaffolds and have been explored extensively in the last decade, due to their low cost and good biocompatibility. Their architecture mimics the natural extracellular matrix. We tested a biodegradable polyester poly-ε-caprolactone in the form of nanofibers as a scaffold for fascia healing in an abdominal closure-reinforcement model for prevention of incisional hernia formation. Both in vitro tests and an experiment on a rabbit model showed promising results.
- Klíčová slova
- growth factors, hernia regeneration, in vivo, nanofibers, surgical mesh,
- MeSH
- biomechanika MeSH
- břicho chirurgie MeSH
- buňky 3T3 MeSH
- chirurgické síťky MeSH
- hernie prevence a kontrola MeSH
- histocytochemie MeSH
- hojení ran účinky léků MeSH
- králíci MeSH
- mezibuněčné signální peptidy a proteiny chemie farmakologie terapeutické užití MeSH
- myši MeSH
- nanovlákna chemie terapeutické užití MeSH
- polyestery chemie terapeutické užití MeSH
- polypropyleny chemie terapeutické užití MeSH
- pooperační komplikace prevence a kontrola MeSH
- řízená tkáňová regenerace MeSH
- techniky uzavření břišních poranění přístrojové vybavení MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mezibuněčné signální peptidy a proteiny MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
- polypropyleny MeSH
Pulmonary artery banding (PAB) is used as a surgical palliation to reduce excessive pulmonary blood flow caused by congenital heart defects. Due to the lack of microscopic studies dealing with the tissue remodeling caused by contemporary PAB materials, this study aimed to assess histologic changes associated with PAB surgery by analyzing local tissue reaction to the presence of Gore-Tex strips fixed around the pulmonary artery. Gore-Tex strips were used for PAB in a growing porcine model. After 5 weeks, histologic samples with PAB (n = 5) were compared with healthy pulmonary arterial segments distal to the PAB or from a sham-treated animal (n = 1). Stereology was used to quantify the density of the vasa vasorum and the area fraction of elastin, smooth muscle actin, macrophages, and nervi vasorum within the pulmonary arterial wall. The null hypothesis stated that samples did not differ histopathologically from adjacent vascular segments or sham-treated samples. The PAB samples had a greater area fraction of macrophages, a lower amount of nervi vasorum, and a tendency toward decreased smooth muscle content compared with samples that had no PAB strips. There was no destruction of elastic membranes, no medionecrosis, no pronounced inflammatory infiltration or foreign body reaction, and no vasa vasorum deficiency after the PAB. All the histopathologic changes were limited to the banded vascular segment and did not affect distal parts of the pulmonary artery. The study results show the tissue reaction of palliative PAB and suggest that Gore-Tex strips used contemporarily for PAB do not cause severe local histologic damage to the banded segment of the pulmonary arterial wall after 5 weeks in a porcine PAB model.
- MeSH
- arteria pulmonalis patologie chirurgie MeSH
- hemodynamika MeSH
- ligace MeSH
- modely nemocí na zvířatech MeSH
- následné studie MeSH
- prasata MeSH
- svaly hladké cévní patologie MeSH
- vrozené srdeční vady patologie chirurgie MeSH
- výkony cévní chirurgie metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Changes observed in mice with congenital damage of some part of the CNS-neuroendocrine-immune regulatory system are described. nu/nu mice with congenital absence of thymus and Lurcher mice with spontaneous olivopontocerebellar degeneration displayed changes in the histoarchitecture of adrenal gland, immune organs (thymus, spleen, axillar lymph nodes) and intestine. Changes were also observed in IgM+, IgG+, CD4+ and CD8+ lymphoid cell subpopulations in the main lymphoid organs--the spleen and axillar lymph nodes and in the proliferative ability of whole lymphoid cell populations. The extreme decrease of lymphoid T-cell subpopulations in athymic nu/nu mice is the consequence of the absence of thymus, the organ of their maturation. On the other hand, a relative increase of B-cell subpopulations was found in this mouse strain. A relative decrease of CD4+ lymphocytes and a different influence of immunization on B-cell subpopulations were found in the spleen in neurodeficient Lurcher mice. The high percentage of apoptotic cells, cells in the S-phase of cell cycle and increased proliferation index in nu/nu mice suggest that the turnover and renewal of lymphoid cells in the spleen in nu/nu mice is more rapid than in control immunocompetent BALB/c mice.
- MeSH
- apoptóza MeSH
- buněčný cyklus MeSH
- CD4-pozitivní T-lymfocyty cytologie MeSH
- CD8-pozitivní T-lymfocyty cytologie MeSH
- lymfatické uzliny cytologie patologie MeSH
- lymfocyty cytologie MeSH
- myši - mutanty neurologické imunologie MeSH
- myši nahé imunologie MeSH
- myši MeSH
- nadledviny cytologie patologie MeSH
- olivopontocerebelární atrofie MeSH
- slezina cytologie patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH