Most cited article - PubMed ID 9040499
Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum
INTRODUCTION: Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. METHODS AND RESULTS: In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. CONCLUSION: Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
- Keywords
- AQP4, ECS diffusion, MRI, TRPV4, brain edema, cerebral ischemia,
- Publication type
- Journal Article MeSH
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
- Keywords
- Alzheimer’s disease, ECS diffusion, astrocyte heterogeneity, astrocytes, ion uptake, volume changes,
- Publication type
- Journal Article MeSH
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).
- MeSH
- Aquaporin 4 genetics metabolism MeSH
- Astrocytes metabolism pathology MeSH
- Biological Transport MeSH
- Potassium metabolism MeSH
- Potassium Channels genetics metabolism MeSH
- Brain Edema genetics metabolism pathology MeSH
- Glial Fibrillary Acidic Protein MeSH
- Glucose deficiency MeSH
- Microscopy, Confocal MeSH
- Membrane Proteins deficiency genetics MeSH
- Microtomy MeSH
- Cerebral Cortex metabolism pathology MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Osmolar Concentration MeSH
- Osmotic Pressure MeSH
- Promoter Regions, Genetic MeSH
- Nerve Tissue Proteins genetics metabolism MeSH
- Calcium-Binding Proteins deficiency genetics MeSH
- Gene Expression Regulation MeSH
- Signal Transduction MeSH
- Stereotaxic Techniques MeSH
- Muscle Proteins deficiency genetics MeSH
- Tissue Culture Techniques MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aquaporin 4 MeSH
- Aqp4 protein, mouse MeSH Browser
- Potassium MeSH
- Potassium Channels MeSH
- enhanced green fluorescent protein MeSH Browser
- glial fibrillary astrocytic protein, mouse MeSH Browser
- Glial Fibrillary Acidic Protein MeSH
- Glucose MeSH
- Membrane Proteins MeSH
- Nerve Tissue Proteins MeSH
- Calcium-Binding Proteins MeSH
- Muscle Proteins MeSH
- syntrophin alpha1 MeSH Browser
- Green Fluorescent Proteins MeSH
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.
- Keywords
- astrocytes, diffusion, extracellular matrix, extracellular space, tortuosity, volume fraction,
- MeSH
- Anisotropy MeSH
- Astrocytes pathology MeSH
- Diffusion MeSH
- Extracellular Matrix physiology MeSH
- Humans MeSH
- Cell Communication physiology MeSH
- Synaptic Transmission physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and neuronal excitability. AQP4 is anchored by α-syntrophin (α-syn), the deletion of which leads to reduced AQP4 levels in perivascular and subpial membranes. We used the real-time iontophoretic method and/or diffusion-weighted magnetic resonance imaging to clarify the impact of α-syn deletion on astrocyte morphology and changes in extracellular diffusion associated with cell swelling in vitro and in vivo. In mice lacking α-syn, we found higher resting values of the apparent diffusion coefficient of water (ADCW) and the extracellular volume fraction (α). No significant differences in tortuosity (λ) or non-specific uptake (k'), were found between α-syn-negative (α-syn -/-) and α-syn-positive (α-syn +/+) mice. The deletion of α-syn resulted in a significantly smaller relative decrease in α observed during elevated K(+) (10 mM) and severe hypotonic stress (-100 mOsmol/l), but not during mild hypotonic stress (-50 mOsmol/l). After the induction of terminal ischemia/anoxia, the final values of ADCW as well as of the ECS volume fraction α indicate milder cell swelling in α-syn -/- in comparison with α-syn +/+ mice. Shortly after terminal ischemia/anoxia induction, the onset of a steep rise in the extracellular potassium concentration and an increase in λ was faster in α-syn -/- mice, but the final values did not differ between α-syn -/- and α-syn +/+ mice. This study reveals that water transport through AQP4 channels enhances and accelerates astrocyte swelling. The substantially altered ECS diffusion parameters will likely affect the movement of neuroactive substances and/or trophic factors, which in turn may modulate the extent of tissue damage and/or drug distribution.
- MeSH
- Aquaporin 4 metabolism MeSH
- Astrocytes metabolism MeSH
- Gene Deletion * MeSH
- Diffusion MeSH
- Potassium metabolism MeSH
- Extracellular Space metabolism MeSH
- Genotype MeSH
- Gene Knockout Techniques MeSH
- Ischemia genetics MeSH
- Membrane Proteins genetics metabolism MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Osmotic Pressure MeSH
- Calcium-Binding Proteins genetics metabolism MeSH
- Somatosensory Cortex metabolism MeSH
- Heart Arrest genetics metabolism MeSH
- Muscle Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aquaporin 4 MeSH
- Potassium MeSH
- Membrane Proteins MeSH
- Calcium-Binding Proteins MeSH
- Muscle Proteins MeSH
- syntrophin alpha1 MeSH Browser
To understand the structural alterations that underlie early and late changes in hippocampal diffusivity after hypoxia/ischemia (H/I), the changes in apparent diffusion coefficient of water (ADC(W)) were studied in 8-week-old rats after H/I using diffusion-weighted magnetic resonance imaging (DW-MRI). In the hippocampal CA1 region, ADC(W) analyses were performed during 6 months of reperfusion and compared with alterations in cell number/cell-type composition, glial morphology, and extracellular space (ECS) diffusion parameters obtained by the real-time iontophoretic method. In the early phases of reperfusion (1 to 3 days) neuronal cell death, glial proliferation, and developing gliosis were accompanied by an ADC(W) decrease and tortuosity increase. Interestingly, ECS volume fraction was decreased only first day after H/I. In the late phases of reperfusion (starting 1 month after H/I), when the CA1 region consisted mainly of microglia, astrocytes, and NG2-glia with markedly altered morphology, ADC(W), ECS volume fraction and tortuosity were increased. Three-dimensional confocal morphometry revealed enlarged astrocytes and shrunken NG2-glia, and in both the contribution of cell soma/processes to total cell volume was markedly increased/decreased. In summary, the ADC(W) increase in the CA1 region underlain by altered cellular composition and glial morphology suggests that considerable changes in extracellular signal transmission might occur in the late phases of reperfusion after H/I.
- MeSH
- Astrocytes pathology MeSH
- Cell Death MeSH
- Time Factors MeSH
- Diffusion MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Extracellular Space metabolism MeSH
- Gliosis etiology pathology MeSH
- CA1 Region, Hippocampal pathology physiopathology MeSH
- Hypoxia complications pathology physiopathology MeSH
- Immunohistochemistry MeSH
- Brain Ischemia complications pathology physiopathology MeSH
- Microscopy, Confocal MeSH
- Rats MeSH
- Neuroglia pathology MeSH
- Cell Count MeSH
- Rats, Wistar MeSH
- Cell Proliferation * MeSH
- Reperfusion MeSH
- Body Water metabolism MeSH
- Imaging, Three-Dimensional MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
- MeSH
- Diffusion MeSH
- Extracellular Space chemistry diagnostic imaging physiology MeSH
- Quaternary Ammonium Compounds MeSH
- Humans MeSH
- Brain Chemistry physiology MeSH
- Brain cytology physiology MeSH
- Neuroglia physiology MeSH
- Neurons physiology MeSH
- Radionuclide Imaging MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Quaternary Ammonium Compounds MeSH
- tetramethylammonium MeSH Browser
[K(+)](e) increase accompanies many pathological states in the CNS and evokes changes in astrocyte morphology and glial fibrillary acidic protein expression, leading to astrogliosis. Changes in the electrophysiological properties and volume regulation of astrocytes during the early stages of astrocytic activation were studied using the patch-clamp technique in spinal cords from 10-day-old rats after incubation in 50 mM K(+). In complex astrocytes, incubation in high K(+) caused depolarization, an input resistance increase, a decrease in membrane capacitance, and an increase in the current densities (CDs) of voltage-dependent K(+) and Na(+) currents. In passive astrocytes, the reversal potential shifted to more positive values and CDs decreased. No changes were observed in astrocyte precursors. Under hypotonic stress, astrocytes in spinal cords pre-exposed to high K(+) revealed a decreased K(+) accumulation around the cell membrane after a depolarizing prepulse, suggesting altered volume regulation. 3D confocal morphometry and the direct visualization of astrocytes in enhanced green fluorescent protein/glial fibrillary acidic protein mice showed a smaller degree of cell swelling in spinal cords pre-exposed to high K(+) compared to controls. We conclude that exposure to high K(+), an early event leading to astrogliosis, caused not only morphological changes in astrocytes but also changes in their membrane properties and cell volume regulation.
- MeSH
- Astrocytes physiology MeSH
- Potassium pharmacokinetics MeSH
- Potassium Channels, Voltage-Gated physiology MeSH
- Glial Fibrillary Acidic Protein metabolism MeSH
- Gliosis physiopathology MeSH
- Hypotonic Solutions pharmacology MeSH
- Immunohistochemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Rats MeSH
- Membrane Potentials drug effects physiology MeSH
- Patch-Clamp Techniques MeSH
- Spinal Cord cytology MeSH
- Osmotic Pressure MeSH
- Rats, Wistar MeSH
- Sodium metabolism MeSH
- Sodium Channels physiology MeSH
- Cell Size MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Potassium MeSH
- Potassium Channels, Voltage-Gated MeSH
- Glial Fibrillary Acidic Protein MeSH
- Hypotonic Solutions MeSH
- Sodium MeSH
- Sodium Channels MeSH
Diffusion parameters of the extracellular space (ECS) are changed in many brain pathologies, disturbing synaptic as well as extrasynaptic "volume" transmission, which is based on the diffusion of neuroactive substances in the ECS. Amyloid deposition, neuronal loss, and disturbed synaptic transmission are considered to be the main causes of Alzheimer's disease dementia. We studied diffusion parameters in the cerebral cortex of transgenic APP23 mice, which develop a pathology similar to Alzheimer's disease. The real-time tetramethylammonium (TMA) method and diffusion-weighted MRI were used to measure the ECS volume fraction (alpha = ECS volume/total tissue volume) and the apparent diffusion coefficients (ADCs) of TMA (ADC(TMA)), diffusing exclusively in the ECS and of water (ADC(W)). Measurements were performed in vivo in 6-, 8-, and 17- to 25-month-old hemizygous APP23 male and female mice and age-matched controls. In all 6- to 8-month-old APP23 mice, the mean ECS volume fraction, ADC(TMA), and ADC(W) were not significantly different from age-matched controls (alpha = 0.20 +/- 0.01; ADC(TMA), 580 +/- 16 microm(2).s(-1); ADC(W), 618 +/- 19 microm(2).s(-1)). Aging in 17- to 25-month-old controls was accompanied by a decrease in ECS volume fraction and ADC(W), significantly greater in females than in males, but no changes in ADC(TMA). ECS volume fraction increased (0.22 +/- 0.01) and ADC(TMA) decreased (560 +/- 7 microm(2).s(-1)) in aged APP23 mice. The impaired navigation observed in these animals in the Morris water maze correlated with their plaque load, which was twice as high in females (20%) as in males (10%) and may, together with changed ECS diffusion properties, account for the impaired extrasynaptic transmission and spatial cognition observed in old transgenic females.
- MeSH
- Alzheimer Disease etiology MeSH
- Amyloid beta-Protein Precursor genetics physiology MeSH
- Diffusion MeSH
- Extracellular Space metabolism MeSH
- Quaternary Ammonium Compounds metabolism MeSH
- Magnetic Resonance Imaging MeSH
- Disease Models, Animal * MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Aging pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amyloid beta-Protein Precursor MeSH
- Quaternary Ammonium Compounds MeSH
- tetramethylammonium MeSH Browser