Nejvíce citovaný článek - PubMed ID 9791175
Plant growth-promoting rhizobacteria (PGPR) boost crop yields and reduce environmental pressures through biofilm formation in natural climates. Recently, biofilm-based root colonization by these microorganisms has emerged as a promising strategy for agricultural enhancement. The current work aims to characterize biofilm-forming rhizobacteria for wheat growth and yield enhancement. For this, native rhizobacteria were isolated from the wheat rhizosphere and ten isolates were characterized for plant growth promoting traits and biofilm production under axenic conditions. Among these ten isolates, five were identified as potential biofilm-producing PGPR based on in vitro assays for plant growth-promoting traits. These were further evaluated under controlled and field conditions for their impact on wheat growth and yield attributes. Surface-enhanced Raman spectroscopy analysis further indicated that the biochemical composition of the biofilm produced by the selected bacterial strains includes proteins, carbohydrates, lipids, amino acids, and nucleic acids (DNA/RNA). Inoculated plants in growth chamber resulted in larger roots, shoots, and increase in fresh biomass than controls. Similarly, significant increases in plant height (13.3, 16.7%), grain yield (29.6, 17.5%), number of tillers (18.7, 34.8%), nitrogen content (58.8, 48.1%), and phosphorus content (63.0, 51.0%) in grains were observed in both pot and field trials, respectively. The two most promising biofilm-producing isolates were identified through 16 s rRNA partial gene sequencing as Brucella sp. (BF10), Lysinibacillus macroides (BF15). Moreover, leaf pigmentation and relative water contents were significantly increased in all treated plants. Taken together, our results revealed that biofilm forming PGPR can boost crop productivity by enhancing growth and physiological responses and thus aid in sustainable agriculture.
- MeSH
- Bacteria klasifikace genetika metabolismus růst a vývoj izolace a purifikace MeSH
- biofilmy * růst a vývoj MeSH
- biomasa MeSH
- kořeny rostlin * mikrobiologie růst a vývoj MeSH
- pšenice * mikrobiologie růst a vývoj MeSH
- půdní mikrobiologie * MeSH
- rhizosféra * MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L-1 within tested strains. Additionally, we identified a concentration of 5 mg L-1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L-1) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.
- Publikační typ
- časopisecké články MeSH
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.
- Klíčová slova
- Bordetella pertussis, CesT chaperone, T3SS, anti-sigma factor, biofilm,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis * metabolismus MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- pertuse * MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- sigma faktor MeSH
Members of the species Ralstonia pickettii and R. mannitolilytica, although ubiquitous and lacking major virulence factors, have been associated with nosocomial outbreaks. Tolerance to metals, antibiotics, and disinfectants may represent an advantage for their ubiquity and opportunistic pathogenic potential. In this study, we compared five strains that differed on the origin (hospital effluent, tap water, mineral water) and in the susceptibility to aminoglycosides, regarding their tolerance to metals and disinfection. The growth kinetics and biofilm formation capacity were tested in four R. pickettii strains and one R. mannitolilytica at sub-inhibitory concentrations of aminoglycosides or arsenite. The survival to UV radiation, chlorine, or hydrogen peroxide was also compared in aminoglycoside resistant and susceptible strains. Aminoglycoside-resistant strains presented a higher tolerance to arsenite than the susceptible ones and either aminoglycosides or arsenite was observed to stimulate the biofilm formation. Sub-inhibitory concentrations of the aminoglycoside gentamicin or arsenite significantly decreased the growth rate and yield, but only arsenite caused a significant increase of the lag phase. Hydrogen peroxide presented higher disinfection effectiveness against aminoglycoside susceptible than against resistant strains, an effect that was not observed for UV or chlorine. Although this conclusion needs validation based on a larger number of isolates, including clinical, the results suggest that aminoglycoside resistance may be associated with traits that influence Ralstonia spp. fitness in the environment.
- MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- arsenitany metabolismus farmakologie MeSH
- bakteriální léková rezistence fyziologie MeSH
- biofilmy účinky léků růst a vývoj MeSH
- dezinficiencia farmakologie MeSH
- fyziologický stres fyziologie MeSH
- gentamiciny metabolismus farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiologie vody * MeSH
- Ralstonia pickettii účinky léků růst a vývoj metabolismus fyziologie MeSH
- Ralstonia účinky léků růst a vývoj metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- arsenitany MeSH
- arsenite MeSH Prohlížeč
- dezinficiencia MeSH
- gentamiciny MeSH
Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.
- Klíčová slova
- biofilms, collective motion, computational model, predictive simulations, self-organization,
- MeSH
- bakteriální adheze fyziologie MeSH
- bakteriální fimbrie metabolismus MeSH
- biofilmy růst a vývoj MeSH
- biologické modely * MeSH
- červený fluorescenční protein MeSH
- flagella fyziologie MeSH
- konfokální mikroskopie MeSH
- luminescentní proteiny MeSH
- mikrobiální interakce fyziologie MeSH
- počítačová simulace MeSH
- pohyb fyziologie MeSH
- Pseudomonas aeruginosa metabolismus fyziologie MeSH
- výpočetní biologie metody MeSH
- zelené fluorescenční proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- luminescentní proteiny MeSH
- zelené fluorescenční proteiny MeSH
Resistance to 17 antimicrobials, surface hydrophobicity, motility, biofilm, production of N-acylhomoserine lactone signal molecules (N-butyrylhomoserine lactone and N-3-oxolauroylhomoserine lactone) and response to oxidative stress were analyzed in 47 clinical Pseudomonas aeruginosa strains. In addition to natural resistance, the strains demonstrated the greatest level of resistance to cefotaxime (91.5%). Isolates in the range of 44.7-57.4% were resistant to aminoglycosides and ciprofloxacin, of 25.5-36.2% to cephalosporins. On the other hand, 97.9% remained susceptible to meropenem, 93.6% to piperacillin + tazobactam and 87.2% to piperacillin. The majority of the strains (72.3%) manifested their hydrophilic character. Higher zones of motility showed 12 isolates (in average 54.8 mm) as compared to the others (30.2 mm). Approximately 1/3 of the strains (29.8%) produced a higher amount of biofilm quantified by measuring the absorbance of solubilized crystal violet (0.20-0.46) than the rest of isolates (0-0.19). All but two strains produced N-3-oxolauroylhomoserine lactone and in 48.9% of samples N-butyrylhomoserine lactone were detected. Only four isolates with higher biofilm production showed both types of homoserine lactone. Majority of the strains (70.2%) manifested higher resistance to H2O2 than the rest of the strains. The group of strains resistant to aminoglycosides and ciprofloxacin revealed a significantly higher number of hydrophobic strains (compared with the sensitive ones). In contrast, higher number of strains sensitive to aminoglycosides and ciprofloxacin or only to ciprofloxacin produced N-butyrylhomoserine lactone and biofilm (compared to the resistant ones). Such association was not found among the rest of the tested parameters. The results indicate that the resistance to antimicrobials in P. aeruginosa isolates was not generally associated with changes in the production of the pathogenicity factors.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence * MeSH
- biofilmy růst a vývoj MeSH
- fenotyp MeSH
- fyziologická adaptace MeSH
- gama-butyrolakton analogy a deriváty biosyntéza MeSH
- genciánová violeť metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- oxidační stres MeSH
- oxidancia farmakologie MeSH
- peroxid vodíku farmakologie MeSH
- pohyb MeSH
- pseudomonádové infekce mikrobiologie MeSH
- Pseudomonas aeruginosa účinky léků izolace a purifikace patogenita MeSH
- virulence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- gama-butyrolakton MeSH
- genciánová violeť MeSH
- oxidancia MeSH
- peroxid vodíku MeSH
Serotyping and some potential virulence-associated markers were investigated in Plesiomonas shigelloides strains isolated from humans, animals and aquatic environments. Surface properties of these strains were evaluated using Congo red binding, salt-aggregation test, bacterial adherence to xylene and motility. Production of pancreatic elastase, proteinase (consistent with subtilisin Carlsberg), triacylglycerol lipase, histidine decarboxylase and beta-hemolysin was also determined. In addition, detection of signal molecules such as C4-C8 unsubstituted N-acylhomoserine lactones (AHLs) was performed. The serological typing of the P. shigelloides strains showed that the isolates belonged to 13 different serovars. The majority of the strains were hydrophobic and motile. The strains produced low levels of elastase, proteinase and histidine decarboxylase whereas triacylglycerol lipase activity was relatively high. Only 23.3 % of the strains produced hemolysin. The AHLs signal molecules were not detected. P. shigelloides strains were able to produce a variety of potential virulence markers which may be involved in the pathogenesis of Plesiomonas-associated infections.
- MeSH
- bakteriální adheze MeSH
- druhová specificita MeSH
- gama-butyrolakton analogy a deriváty metabolismus MeSH
- gramnegativní bakteriální infekce mikrobiologie MeSH
- hemolyziny biosyntéza MeSH
- histidindekarboxylasa biosyntéza MeSH
- lidé MeSH
- lipasa biosyntéza MeSH
- mikrobiologie vody MeSH
- pankreatická elastasa biosyntéza MeSH
- Plesiomonas klasifikace izolace a purifikace metabolismus patogenita MeSH
- sérotypizace MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gama-butyrolakton MeSH
- hemolyziny MeSH
- histidindekarboxylasa MeSH
- homoserine lactone MeSH Prohlížeč
- lipasa MeSH
- pankreatická elastasa MeSH