Brassinosteroids (BRs) are phytohormones which regulate various developmental processes in plants. They are exceptional phytohormones, as they do not undergo long-distance transport between plant organs. However, knowledge about the function of the enzymes that catalyse BR biosynthesis (particularly its early stages) in cereal crops remains limited. Therefore, this study identifies and analyses the function of the HvDWARF5 (HvDWF5) gene, involved in the early stage of BR biosynthesis in barley (Hordeum vulgare), an important cereal crop, using the TILLING (Targeting Induced Local Lesions IN Genomes) approach. The detailed functional analysis allowed for the identification of various mutations in different gene fragments. The influence of these mutations on plant architecture, reproduction, and yield was characterised. Moreover, effects of the missense and intron retention mutations on sequence and splicing of the HvDWF5 transcript, sequence and predicted structure of the encoded HvDWF5 enzyme, and accumulation of endogenous BR were determined. Some of the barley mutants identified in this study showed semi-dwarfism, a trait of particular importance for cereal breeding and yield. However, unlike other BR mutants in cereals, this did not negatively affect grain size or weight. It indicated that mutations in this gene allow for a balance between plant height reduction and maintenance of grain size. Thus, the results of this study provide a novel insight into the role of the HvDWF5 gene in the BR biosynthesis-dependent regulation of architecture and reproduction of the important cereal crop - barley.
- MeSH
- brassinosteroidy * metabolismus biosyntéza MeSH
- ječmen (rod) * genetika metabolismus růst a vývoj MeSH
- jedlá semena * genetika růst a vývoj MeSH
- mutace genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy * MeSH
- rostlinné proteiny * MeSH
Over the past decade, the escalating prevalence of copper (Cu) pollution in soil has raised significant concerns due to its potential detrimental impacts on soil quality, microbial communities, plant health, food security, and land degradation. Despite extensive research, the response mechanisms, threshold levels, and reliable indicators of Cu pollution remain debated. Therefore, comprehensive studies are needed to gain a better understanding of these dynamics. This study address these gaps by: (1) evaluating Cu toxicity effects on soil biological, biochemical, barley germination, growth, biomass, and physiological parameters, and (2) identifying robust indicators for early assessment of Cu-associated risks. Soil was amended with CuSO4 at concentrations ranging from 0 to 210 mg kg-1. Factors exacerbating Cu toxicity included Cu concentration, pH levels, and the duration of Cu accumulation within the soil ecosystem. Consequently, at the highest Cu concentration a significant reduction in soil biological, biochemical, barley germination, growth, biomass, and physiological parameters was observed towards the end of the experiment. Simultaneously, there was a substantial increase in the levels of antioxidant enzymes, malondialdehyde (MDA), reactive oxygen species (ROS), and electrolyte leakage (EL) triggered by Cu presence. Correlation analyses highlighted bacterial populations, microbial biomass carbon (MBC), dehydrogenase activity, respiration rates, pH levels, seedling fresh biomass and height, chlorophyll content, photosynthetic activity, protein content, superoxide dismutase (SOD) activity, ROS levels, and MDA as sensitive indicators of Cu stress. As a result, these parameters are proposed as reliable indicators for predicting Cu toxicity thresholds, excessive accumulation, and associated risks within soil ecosystems. These indicators have implications not only for land degradation but also for food security considerations.
- Klíčová slova
- Barley physiological indexes, Cu toxicity, Soil biochemical indexes, Soil biological indexes,
- MeSH
- ekosystém * MeSH
- ječmen (rod) * růst a vývoj účinky léků fyziologie MeSH
- klíčení účinky léků MeSH
- látky znečišťující půdu * toxicita MeSH
- měď * toxicita MeSH
- monitorování životního prostředí * MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- měď * MeSH
- půda MeSH
In response to environmental changes, plants continuously make architectural changes in order to optimize their growth and development. The regulation of plant branching, influenced by environmental conditions and affecting hormone balance and gene expression, is crucial for agronomic purposes due to its direct correlation with yield. Strigolactones (SL), the youngest class of phytohormones, function to shape the architecture of plants by inhibiting axillary outgrowth. Barley plants harboring the mutation in the HvDWARF14 (HvD14) gene, which encodes the SL-specific receptor, produce almost twice as many tillers as wild-type (WT) Sebastian plants. Here, through hormone profiling and comparison of transcriptomic and proteomic changes between 2- and 4-week-old plants of WT and hvd14 genotypes, we elucidate a regulatory mechanism that might affect the tillering of SL-insensitive plants. The analysis showed statistically significant increased cytokinin content and decreased auxin and abscisic acid content in 'bushy' hvd14 compared to WT, which aligns with the commonly known actions of these hormones regarding branching regulation. Further, transcriptomic and proteomic analysis revealed a set of differentially expressed genes (DEG) and abundant proteins (DAP), among which 11.6% and 14.6% were associated with phytohormone-related processes, respectively. Bioinformatics analyses then identified a series of potential SL-dependent transcription factors (TF), which may control the differences observed in the hvd14 transcriptome and proteome. Comparison to available Arabidopsis thaliana data implicates a sub-selection of these TF as being involved in the transduction of SL signal in both monocotyledonous and dicotyledonous plants.
- Klíčová slova
- Hordeum vulgare, Branching, Phytohormone cross-talk, Strigolactones,
- MeSH
- cytokininy metabolismus MeSH
- heterocyklické sloučeniny tricyklické * MeSH
- homeostáza MeSH
- ječmen (rod) * růst a vývoj metabolismus MeSH
- laktony * metabolismus MeSH
- mutace MeSH
- proteom analýza MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- GR24 strigolactone MeSH Prohlížeč
- heterocyklické sloučeniny tricyklické * MeSH
- laktony * MeSH
- proteom MeSH
- regulátory růstu rostlin * MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Pulsed electric field (PEF) has previously been recognized as a method of gentle food processing, and its use has been shown to be helpful in reducing the levels of toxigenic Fusarium micromycetes developed during malting. The aim of this study was to describe the effects of PEF on gene expression and metabolite production at the pre-finishing stage of barley malting by using a novel multi-omics data-driven approach. The study helps to uncover the processes occurring in the germinated grain and discusses the up-/downregulation of genes and metabolites in relation to fungal infection and/or PEF-induced abiotic stress. Among the factors upregulated by PEF and previously described as supportive against Fusarium diseases, we identified the increased expression of genes encoding vegetative gp1-like protein, which positively correlated with flavonoids, (methylsulfanyl)prop-2-enoates, triterpenoid glycosides, and indole alkaloids. On the other hand, some genes associated with barley resistance to fungal infection were also overexpressed in the untreated control (in particular, genes encoding ethylene response factor 3-like, putrescine hydroxycinnamoyltransferase 3-like, and dirigent protein 21-like). This study provides the first 'data-driven' basic research results that contribute to the understanding of the role of PEF as an effective fungal decontamination strategy and allows the formulation of new hypotheses related to Fusarium pathogen crosstalk.
- Klíčová slova
- Fusarium micromycetes, abiotic stress, barley, metabolomics, multi-omics, pulsed electric field, transcriptomics,
- MeSH
- dekontaminace * metody MeSH
- elektřina * MeSH
- Fusarium * patogenita MeSH
- ječmen (rod) * mikrobiologie genetika metabolismus růst a vývoj MeSH
- jedlá semena * mikrobiologie genetika metabolismus MeSH
- multiomika MeSH
- nemoci rostlin mikrobiologie MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
There is a need for ground-breaking technologies to boost crop yield, both grains and biomass, and their processing into economically competitive materials. Novel cereals with enhanced photosynthesis and assimilation of greenhouse gasses, such as carbon dioxide and ozone, and tailored straw suitable for industrial manufacturing, open a new perspective for the circular economy. Here we describe the vision, strategies, and objectives of BEST-CROP, a Horizon-Europe and United Kingdom Research and Innovation (UKRI) funded project that relies on an alliance of academic plant scientists teaming up with plant breeding companies and straw processing companies to use the major advances in photosynthetic knowledge to improve barley biomass and to exploit the variability of barley straw quality and composition. We adopt the most promising strategies to improve the photosynthetic properties and ozone assimilation capacity of barley: (i) tuning leaf chlorophyll content and modifying canopy architecture; (ii) increasing the kinetics of photosynthetic responses to changes in irradiance; (iii) introducing photorespiration bypasses; (iv) modulating stomatal opening, thus increasing the rate of carbon dioxide fixation and ozone assimilation. We expect that by improving our targeted traits we will achieve increases in aboveground total biomass production without modification of the harvest index, with added benefits in sustainability via better resource-use efficiency of water and nitrogen. In parallel, the resulting barley straw is tailored to: (i) increase straw protein content to make it suitable for the development of alternative biolubricants and feed sources; (ii) control cellulose/lignin contents and lignin properties to develop straw-based construction panels and polymer composites. Overall, by exploiting natural- and induced-genetic variability as well as gene editing and transgenic engineering, BEST-CROP will lead to multi-purpose next generation barley cultivars supporting sustainable agriculture and capable of straw-based applications.
- Klíčová slova
- barley, biolubricants, canopy photosynthesis, circular bioeconomy, composites, feed, straw quality, straw‐based panels,
- MeSH
- biomasa MeSH
- fotosyntéza * fyziologie MeSH
- ječmen (rod) * fyziologie metabolismus genetika růst a vývoj MeSH
- listy rostlin fyziologie metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- ozon metabolismus MeSH
- šlechtění rostlin MeSH
- zemědělské plodiny * fyziologie MeSH
- zemědělství * metody ekonomika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- oxid uhličitý MeSH
- ozon MeSH
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
- Klíčová slova
- apoplastic root barrier, lignin, soil water potential, soil water stress, soil‐grown barley root, suberin,
- MeSH
- dehydratace MeSH
- hydroponie * MeSH
- ječmen (rod) * genetika růst a vývoj metabolismus fyziologie MeSH
- kořeny rostlin * metabolismus růst a vývoj MeSH
- lignin metabolismus MeSH
- lipidy analýza biosyntéza MeSH
- půda * chemie MeSH
- regulace genové exprese u rostlin MeSH
- voda * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lignin MeSH
- lipidy MeSH
- půda * MeSH
- suberin MeSH Prohlížeč
- voda * MeSH
The amount of total polyphenol content (TPC) in the grain could provide insights into the conditions during maturation and might also serve as an indicator of the grain's ability to germinate in the malting process or as seeds in the field. Varieties with higher natural TPC content might exhibit better germination parameters both in the field and in the malt house. This study investigates the relationship between TPC and seed germination characteristics i.e. seed vigour in four spring barley varieties over two years, considering diverse environmental conditions and exposure to drought conditions. The evaluation of seed germination characteristics in barley, with a focus on the root length and average diameter under drought conditions (-0.5 MPa) and suboptimal temperature (10 °C), was conducted. Drought conditions were induced using polyethylene glycol (PEG 6000). After durations of seven and fourteen days, the germinated seeds from the Petri dishes were scanned and subjected to analysis using WinRHIZO software following the metrics: Len 7, Len 14 (root length after seven and fourteen days in cm) and AvgD 7, AvgD 14 (root diameter after seven and fourteen days in mm). The findings support our initial hypothesis, indicating a variety-specific relationship between seed germination characteristics and increased TPC, where higher germination parameters might be associated with elevated TPC levels in some barley varieties.
- Klíčová slova
- Drought conditions, Environment, Genotype, Seed germination characteristics, Spring barley, TPC,
- MeSH
- ječmen (rod) * růst a vývoj fyziologie MeSH
- klíčení * fyziologie MeSH
- klimatické změny * MeSH
- období sucha MeSH
- polyfenoly * analýza metabolismus MeSH
- roční období MeSH
- semena rostlinná * růst a vývoj MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyfenoly * MeSH
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
- Klíčová slova
- Acetylated amino acids, LC-MS/MS, acetylated biogenic amines, amino acids, biogenic amines, methylated amino acids, plant metabolism,
- MeSH
- Arabidopsis metabolismus růst a vývoj MeSH
- chromatografie kapalinová MeSH
- dusík * metabolismus MeSH
- ječmen (rod) metabolismus růst a vývoj MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- kukuřice setá metabolismus růst a vývoj MeSH
- polyaminy metabolismus analýza MeSH
- rostliny metabolismus MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- polyaminy MeSH
Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.
- MeSH
- endosperm * genetika metabolismus růst a vývoj MeSH
- epigeneze genetická MeSH
- genové regulační sítě MeSH
- histony metabolismus genetika MeSH
- ječmen (rod) * genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- semena rostlinná * genetika růst a vývoj metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom * genetika MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.
- Klíčová slova
- Barley (Hordeum vulgare L.), Crown roots, Emergence, Transcriptome,
- MeSH
- ječmen (rod) * genetika růst a vývoj metabolismus MeSH
- kořeny rostlin * růst a vývoj genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny MeSH
- semenáček růst a vývoj genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH