The high use of additives containing zinc borate and their limited solubility in water both lead to its persistence and accumulation in biological systems. On the other hand, soluble forms of boron are easily available to plant roots and are taken up by plants. There are no ecotoxicological data available for zinc borate, the industrial utilization of which is widespread. Therefore, the potential toxicity of zinc borate and its dissociated compounds was evaluated. Based on two different ecotoxicology tests, their effect on plant growth was studied. Firstly, the impact on Lemna minor growth was investigated, including the effect on pigment content. Secondly, the inhibition of the root growth of higher plant species Sinapis alba (mustard), Lactuca sativa (lettuce) and Trifolium pretense (clover) was measured. The growth inhibition test on L. minor was more complex and sensitive compared to the plant seed germination test. Already low concentrations (10 mg/L) of ZnO, B2O3 and Zn3BO6 led to a decrease in frond growth and to an inhibition of the conversion of chlorophyll a to chlorophyll b. These results suggested that the stress caused by these additives caused damage to the photosynthetic apparatus. The highest inhibition of frond growth was detected in fronds treated with B2O3 (92-100%). In ZnO and Zn3BO6, the inhibition of frond growth was between 38 and 77%, with Zn3BO6 being slightly more toxic. In the seed germination test, the most sensitive species was lettuce, the growth of which was inhibited by 57, 83 and 53% in ZnO, B2O3 and Zn3BO6 treatments, respectively. However, the inhibitory effect on each plant was different. In lettuce and clover, the seed germination and root elongation decreased with increasing element concentrations. In contrast, in mustard, low concentrations of ZnO and Zn3BO6 supported the growth of roots. For that reason, more complex tests are essential to evaluate the additive toxicity in the environment.
- Klíčová slova
- duckweed, growth inhibition, lettuce, zinc borate,
- Publikační typ
- časopisecké články MeSH
The use of biochar in soil remediation is a promising method to deal with metal contamination. In the present study, the influence of biochar amendment on the toxicity of silver (as AgNO3) to terrestrial organisms was assessed. For this, toxicity tests were conducted with terrestrial plant barley (Hordeum vulgare) and invertebrate springtails (Folsomia candida) in the standard natural Lufa soil amended or not with a wood-derived biochar at 5% (w/w). Biochar addition increased root length and mass in barley, compared to unamended soil. However, the effects of Ag on barley growth were masked by a great variation among replicates in biochar-amended soil. Photosynthetic pigment contents (total chlorophyll and carotenoids) were lower in plants exposed to Ag in Lufa soil, but not in biochar-amended soil. Moreover, Ag drastically decreased dehydrogenase activity in Lufa soil. For springtails, the addition of biochar clearly decreased the toxicity of Ag. The LC50 was 320 mg Ag/kg in Lufa soil, while no mortality was observed up to 500 mg Ag/kg in biochar-amended soil. The EC50 for effects on reproduction was significantly higher in biochar-amended soil compared to unamended Lufa soil (315 and 215 mg Ag/kg, respectively). The wood-derived biochar used in this study has shown a potential for remediation of contaminated soils, as a decrease in Ag toxicity was observed in most endpoints analysed in barley and springtails.
- Klíčová slova
- Dehydrogenase activity, Ecotoxicology, Heavy metals, Plants, Soil contamination, Soil invertebrates,
- MeSH
- členovci * MeSH
- dřevěné a živočišné uhlí farmakologie MeSH
- ječmen (rod) * MeSH
- látky znečišťující půdu * analýza MeSH
- půda MeSH
- stříbro toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
- látky znečišťující půdu * MeSH
- půda MeSH
- stříbro MeSH
Increased soil drought events threaten the yields of sugar beet (Beta vulgaris L.) and other staples of arable production in central Europe. In this study we evaluated soil moisture and nutrients as impacted by a two and five % (wt) addition of biochar, manure and their blend to a loamy-sand Regosol. Cyclical soil drought was achieved by the controlled reduction of watering by 75% in pot experiments. Ongoing soil moisture and nutrient measurements were taken, and physiological parameters of sugar beet plants were analysed three weeks after the induced drought. At the end of the experiment (16 weeks) plants were harvested and their mass assessed, as well as their nutrient, pigment and sugar contents. In contrast to the addition of manure, soil volumetric water contents were two to three times greater after biochar amendment, compared to the control soil. Porewater analysis revealed that nutrient leaching (e.g., NO3-, K+) from manure addition to soil was reduced when biochar was blended in (by ≤86% compared to manure alone). Crop analysis showed that leaf gas exchanges were moderated during drought following soil amendment, and leaf and tuber yields were increased furthest when combined biochar-manure blends were applied (> 2-times compared to the control). Perhaps most importantly, the advantageous soil conditions induced by the combined biochar and manure addition also resulted in significantly increased sugar contents in plants (2.4-times) pointing to immediate practical applications of these results in the field.
- Klíčová slova
- Biochar, Drought, Manure, Soil moisture, Sugar beet, Water stress response,
- MeSH
- Beta vulgaris * MeSH
- dehydratace MeSH
- dřevěné a živočišné uhlí MeSH
- hnůj * MeSH
- lidé MeSH
- půda MeSH
- sacharosa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
- hnůj * MeSH
- půda MeSH
- sacharosa MeSH
Wood is one of the extensively used goods on the earth due to its large accessibility and usage in a wide range of human life. When woods are exposed to aquatic media, leachates are generated which may affect the quality of water and damage aquatic life into which they are discharged. This research seeks to evaluate the toxicity of linden (Tilia cordata), larch (Larix decidua) from the Czech Republic, cedrela (Cedrela odorata) and emire (Terminalia ivorensis) from Ghana wood leachates to two aquatic organisms (Desmodesmus subspicatus and Lemna minor). In algal and duckweed toxicity tests, these plants were exposed to different concentrations of wood leachate with nutrient medium creating concentration rates, 20, 30, 45, 67, and 100% v/v. High concentration of phenols and heavy metals may have contributed to toxicity. It was observed that the various wood leachates were inhibitory to the growth rate of algae and duckweed with emire exhibiting the highest toxicity with IC50 of 30.04% and 28.58% and larch the lowest toxicity with IC50 of 51.18% and 49.57% in relation to growth rate and chlorophyll respectively, hence indicating confirmed and potential toxicity of the various wood leachates to the aquatic organisms.
- Klíčová slova
- Aquatic organism, Aquatic plants, Ecotoxicity, Inhibition, Leachate, Wood,
- MeSH
- Araceae * MeSH
- chemické látky znečišťující vodu * toxicita MeSH
- dřevo MeSH
- lidé MeSH
- rostliny MeSH
- testy toxicity MeSH
- těžké kovy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- těžké kovy * MeSH
Arsenic (As) contaminates the food chain and decreases agricultural production through impairing plants, particularly due to oxidative stress. To better understand the As tolerance mechanisms, two contrasting tobacco genotypes: As-sensitive Nicotiana sylvestris and As-tolerant N.tabacum, cv. 'Wisconsin' were analyzed. The most meaningful differences were found in the carbohydrate status, neglected so far in the As context. In the tolerant genotype, contrary to the sensitive one, net photosynthesis rates and saccharide levels were unaffected by As exposure. Importantly, the total antioxidant capacity was far stronger in the As-tolerant genotype, based on higher antioxidants levels (e.g., phenolics, ascorbate, glutathione) and activities and/or appropriate localizations of antioxidative enzymes, manifested as reverse root/shoot activities in the selected genotypes. Accordingly, malondialdehyde levels, a lipid peroxidation marker, increased only in sensitive tobacco, indicating efficient membrane protection in As-tolerant species. We bring new evidence of the orchestrated action of a broad spectrum of both antioxidant enzymes and molecules essential for As stress coping. For the first time, we propose robust carbohydrate metabolism based on undisturbed photosynthesis to be crucial not only for subsidizing C and energy for defense but also for participating in direct reactive oxygen species (ROS) quenching. The collected data and suggestions can serve as a basis for the selection of plant As phytoremediators or for targeted breeding of tolerant crops.
- Klíčová slova
- ROS, antioxidant, antioxidant enzyme, arsenate, arsenic, arsenite, oxidative stress, saccharides, tolerant and sensitive tobacco,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Strigolactones are a unique class of plant metabolites which serve as a rhizosphere signal for parasitic plants and evocate their seed germination. The expansion of these parasitic weeds in the food crop fields urgently calls for their increased control and depletion. Simple strigolactone analogues able to stimulate seed germination of these parasitic plants may represent an efficient control measure through the induction of suicidal germination. RESULTS: Triazolide-type strigolactone mimics were easily synthesized in three steps from commercially available materials. These derivatives induced effectively seed germination of Phelipanche ramosa with EC50 as low as 5.2 × 10-10 M. These mimics did not induce seed germination of Striga hermonthica even at high concentration (≥1 × 10-5 M). CONCLUSIONS: Simple and stable strigolactone mimics with selective activity against Phelipanche ramosa were synthesized. © 2019 Society of Chemical Industry.
- Klíčová slova
- Arabidopsis, Phelipanche, Striga, seed germination, strigolactones,
- MeSH
- herbicidy chemická syntéza farmakologie MeSH
- klíčení účinky léků MeSH
- laktony chemická syntéza farmakologie MeSH
- Orobanchaceae účinky léků MeSH
- plevel účinky léků MeSH
- semena rostlinná účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- herbicidy MeSH
- laktony MeSH
- triazolide strigolactone MeSH Prohlížeč
Our project was aimed at improving a brownfield in the city of Kladno, where an old steel producing facility used to be in operation. Ecological risk is mainly caused by the processing of co-products during coal production (tars, oils). Knowledge of toxicology and environmental aspects can help us protect human health and the environment. Primarily, we focused on soil sampling and identification of pollutants. Results showed that organic contamination on the site is very high. Average concentration of total petroleum carbon in the soil was about 13g/kg DW, which is much more than the maximum allowed concentration. For selection of suitable plant species for phytoremediation at the site, experiments were conducted in a greenhouse. Biomass growth, root morphology, and pigment content in the leaves of Brassica napus var. Opus-C1 and Sorghum×drummondii var. Honey Graze BMR plants were studied. Plant analysis confirmed that polyaromatic hydrocarbons (PAHs) accumulated in the shoots of both plant species. B. napus plants grown on Poldi soil in a greenhouse were able to survive the toxicity of PAHs in soil, and their ability to accumulate PAHs from soil was evident. However, more studies are needed to decide if the plants are usable for phytoremediation of this brownfield.
- Klíčová slova
- Brownfield, Energy plants, Phytoremediation, Polyaromatic hydrocarbons,
- Publikační typ
- časopisecké články MeSH
Engineered nanoparticles (ENPs) exhibit unique properties advantageous in a number of applications, but they also represent potential health and environmental risks. In this study, we investigated the phytotoxic mechanism of CuO ENPs using transcriptomic analysis and compared this response with the response to CuO bulk particles and ionic Cu2+. Ionic Cu2+ at the concentration of 0.16 mg L-1 changed transcription of 2692 genes (p value of <0.001, fold change of ≥2) after 7 days of exposure, whereas CuO ENPs and bulk particles (both in the concentration of 10 mg L-1) altered the expression of 922 and 482 genes in Arabidopsis thaliana roots, respectively. The similarity between transcription profiles of plants exposed to ENPs and ionic Cu2+ indicated that the main factor in phytotoxicity was the release of Cu2+ ions from CuO ENPs after 7 days of exposure. The effect of Cu2+ ions was evident in all treatments, as indicated by the down-regulation of genes involved in metal homeostasis and transport and the up-regulation of oxidative stress response genes. ENPs were more soluble than bulk particles, resulting in the up-regulation of metallochaperone-like genes or the down-regulation of aquaporins and metal transmembrane transporters that was also characteristic for ionic Cu2+ exposure.
Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the Příbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants' aboveground and belowground biomass and in woody plants' leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg-1 in twigs and 16.74 and 1188 mg kg-1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg-1, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.
- Klíčová slova
- Field trial, Heavy metals, Minimum inputs, Phytoextraction, Soil contamination,
- MeSH
- biodegradace MeSH
- kadmium MeSH
- látky znečišťující půdu analýza MeSH
- Malva MeSH
- olovo MeSH
- průmyslová hnojiva MeSH
- těžké kovy analýza MeSH
- zemědělství MeSH
- zinek MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu MeSH
- olovo MeSH
- průmyslová hnojiva MeSH
- těžké kovy MeSH
- zinek MeSH
Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated.
- Klíčová slova
- Accumulation, Biofortification, Daily intake, Heavy metal, Polyamine, Vegetables,
- MeSH
- analýza potravin MeSH
- fyziologický stres účinky léků MeSH
- kadaverin chemie farmakologie MeSH
- kadmium analýza MeSH
- kontaminace potravin prevence a kontrola MeSH
- těžké kovy analýza MeSH
- zelenina MeSH
- železo analýza MeSH
- zemědělské plodiny účinky léků metabolismus MeSH
- zinek analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadaverin MeSH
- kadmium MeSH
- těžké kovy MeSH
- železo MeSH
- zinek MeSH