Bone marrow adipose tissue Dotaz Zobrazit nápovědu
Bone marrow adipose tissue (BMAT) has been considered for several decades as a silent bystander that fills empty space left in bone marrow following age-related decrease in hematopoiesis. However, recently new discoveries revealed BMAT as a secretory and metabolically active organ contributing to bone and whole-body energy metabolism. BMAT exhibits metabolic functions distinct from extramedullary adipose depots, relevant to its role in regulation of energy metabolism and its contribution to fracture risk observed in metabolic bone diseases. This review discusses novel insights of BMAT with particular emphasis on its contribution to the regulation of bone homeostasis. We also discuss the role of BMAT in regulation of fuel utilization and energy use that affect skeletal stem cell functions.
- Klíčová slova
- bone marrow adipose tissue, bone marrow mesenchymal stem cells, energy metabolism, metabolic pathways,
- MeSH
- energetický metabolismus MeSH
- kosti a kostní tkáň MeSH
- kostní dřeň * MeSH
- lidé MeSH
- remodelace kosti MeSH
- tuková tkáň * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE OF REVIEW: This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS: There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.
- Klíčová slova
- Bone marrow adipose tissue, Bone mineral density, Clinical trials, Fractures, Imaging, Lipid composition, Osteoporosis,
- MeSH
- kostní denzita MeSH
- kostní dřeň * diagnostické zobrazování MeSH
- lidé MeSH
- lipidy MeSH
- magnetická rezonanční tomografie metody MeSH
- osteoporóza * diagnostické zobrazování patologie MeSH
- tuková tkáň diagnostické zobrazování patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- lipidy MeSH
Over the last two decades, increased interest of scientists to study bone marrow adiposity (BMA) in relation to bone and adipose tissue physiology has expanded the number of publications using different sources of bone marrow adipose tissue (BMAT). However, each source of BMAT has its limitations in the number of downstream analyses for which it can be used. Based on this increased scientific demand, the International Bone Marrow Adiposity Society (BMAS) established a Biobanking Working Group to identify the challenges of biobanking for human BMA-related samples and to develop guidelines to advance establishment of biobanks for BMA research. BMA is a young, growing field with increased interest among many diverse scientific communities. These bring new perspectives and important biological questions on how to improve and build an international community with biobank databases that can be used and shared all over the world. However, to create internationally accessible biobanks, several practical and legislative issues must be addressed to create a general ethical protocol used in all institutes, to allow for exchange of biological material internationally. In this position paper, the BMAS Biobanking Working Group describes similarities and differences of patient information (PIF) and consent forms from different institutes and addresses a possibility to create uniform documents for BMA biobanking purposes. Further, based on discussion among Working Group members, we report an overview of the current isolation protocols for human bone marrow adipocytes (BMAds) and bone marrow stromal cells (BMSCs, formerly mesenchymal), highlighting the specific points crucial for effective isolation. Although we remain far from a unified BMAd isolation protocol and PIF, we have summarized all of these important aspects, which are needed to build a BMA biobank. In conclusion, we believe that harmonizing isolation protocols and PIF globally will help to build international collaborations and improve the quality and interpretation of BMA research outcomes.
- Klíčová slova
- biobanking, bone marrow adipocytes, bone marrow adiposity, bone marrow stromal cells, cell isolation protocols, clinical studies, international research networks, patient information,
- MeSH
- adipozita MeSH
- banky biologického materiálu MeSH
- kostní dřeň * MeSH
- lidé MeSH
- tkáňové banky organizace a řízení MeSH
- tuková tkáň * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
This review focuses on providing physicians with insights into the complex relationship between bone marrow adipose tissue (BMAT) and bone health, in the context of weight loss through caloric restriction or metabolic and bariatric surgery (MBS), in people living with obesity (PwO). We summarize the complex relationship between BMAT and bone health, provide an overview of noninvasive imaging techniques to quantify human BMAT, and discuss clinical studies measuring BMAT in PwO before and after weight loss. The relationship between BMAT and bone is subject to variations based on factors such as age, sex, menopausal status, skeletal sites, nutritional status, and metabolic conditions. The Bone Marrow Adiposity Society (BMAS) recommends standardizing imaging protocols to increase comparability across studies and sites, they have identified both water-fat imaging (WFI) and spectroscopy (1H-MRS) as accepted standards for in vivo quantification of BMAT. Clinical studies measuring BMAT in PwO are limited and have shown contradictory results. However, BMAT tends to be higher in patients with the highest visceral adiposity, and inverse associations between BMAT and bone mineral density (BMD) have been consistently found in PwO. Furthermore, BMAT levels tend to decrease after caloric restriction-induced weight loss. Although weight loss was associated with overall fat loss, a reduction in BMAT did not always follow the changes in fat volume in other tissues. The effects of MBS on BMAT are not consistent among the studies, which is at least partly related to the differences in the study population, skeletal site, and duration of the follow-up. Overall, gastric bypass appears to decrease BMAT, particularly in patients with diabetes and postmenopausal women, whereas sleeve gastrectomy appears to increase BMAT. More research is necessary to evaluate changes in BMAT and its connection to bone metabolism, either in PwO or in cases of weight loss through caloric restriction or MBS, to better understand the role of BMAT in this context and determine the local or systemic factors involved.
- Klíčová slova
- bone marrow adipose tissue, bone mineral density, clinical trials, fractures, imaging, metabolic and bariatric surgery, obesity, osteoporosis, weight loss,
- MeSH
- hmotnostní úbytek MeSH
- kostní denzita MeSH
- kostní dřeň * metabolismus MeSH
- lidé MeSH
- obezita metabolismus MeSH
- tuková tkáň * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
AIMS: Our aims were to characterize human mesenchymal stem cells isolated from various tissues by pluripotent stem cells gene expression profile. METHODS: Four strains of dental pulp stem cells (DP-MSCs) were isolated from dental pulp tissue fragments adhered to plastic tissue culture dishes. Mesenchymal stem cells derived from umbilical cord tissue (UBC-MSCs) were isolated with the same technique. Bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated from nucleated cells of bone marrow obtained by density gradient centrifugation. Human mesenchymal stem cells from adipose tissue (AT-MSCs) were isolated by collagenase digestion. All kinds of MSCs used in this study were cultivated in low glucose DMEM containing 5% or human platelet extract. All stem cell manipulation was performed in GMP conditions. Expression of 15 pluripotent stem cells genes on the level of proteins was measured by Proteome Profiler Human Pluripotent Stem Cell Array. Induction of MSCs to in vitro differentiation to adipocytes, osteoblasts, chondroblasts was achieved by cultivation of cells in appropriate differentiation medium. RESULTS: All MSCs tested were phenotypically similar and of fibroblastoid morphology. DP-MSCs and UBC-MSCs were more proliferative than bone marrow BM-MSCs and AT-MSCs. Protein expression of 15 genes typical for pluripotent stem cells distinguished them into two groups. While the gene expression profiles of BM-MSC, AT-MSCs and UBC-MSCs were similar, DP-MSCS differed in relative gene expression on the level of their products in several genes. CONCLUSIONS: Dental pulp mesenchymal stem cells cultivated in vitro under the same conditions as MSCs from bone marrow, adipose tissue and umbilical cord tissue can be distinguished by pluripotent stem cell gene expression profile.
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčné kultury MeSH
- buňky kostní dřeně cytologie MeSH
- exprese genu * MeSH
- fenotyp MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- proliferace buněk MeSH
- pupečník cytologie MeSH
- techniky in vitro MeSH
- tuková tkáň cytologie MeSH
- zubní dřeň cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
PURPOSE OF REVIEW: The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS: Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.
- Klíčová slova
- Bone marrow adipose tissue, Bone marrow mesenchymal stem cells, Insulin signaling, Marrow adiposity,
- MeSH
- adipogeneze MeSH
- buněčná diferenciace MeSH
- buňky kostní dřeně metabolismus MeSH
- glukagonu podobný peptid 1 metabolismus MeSH
- glukosa metabolismus MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence MeSH
- kosti a kostní tkáň metabolismus MeSH
- kostní dřeň metabolismus MeSH
- lidé MeSH
- metabolické nemoci kostí metabolismus MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- obezita metabolismus MeSH
- parathormon metabolismus MeSH
- protein 4 vázající insulinu podobné růstové faktory metabolismus MeSH
- proteiny insulinového receptorového substrátu metabolismus MeSH
- receptor inzulinu metabolismus MeSH
- receptor pro konečné produkty pokročilé glykace metabolismus MeSH
- stárnutí buněk * MeSH
- tuková tkáň metabolismus MeSH
- tukové buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- glukagonu podobný peptid 1 MeSH
- glukosa MeSH
- insulinu podobný růstový faktor I MeSH
- inzulin MeSH
- parathormon MeSH
- protein 4 vázající insulinu podobné růstové faktory MeSH
- proteiny insulinového receptorového substrátu MeSH
- receptor inzulinu MeSH
- receptor pro konečné produkty pokročilé glykace MeSH
Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.
- Klíčová slova
- Nutrition, Diet composition, Bone, Bone marrow adiposity, Sex differences,
- MeSH
- adipozita * fyziologie MeSH
- kosti a kostní tkáň metabolismus MeSH
- kostní dřeň * metabolismus MeSH
- lidé MeSH
- nutriční stav MeSH
- pohlavní dimorfismus MeSH
- remodelace kosti fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bone marrow adiposity (BMA) is a rapidly growing yet very young research field that is receiving worldwide attention based on its intimate relationship with skeletal and metabolic diseases, as well as hematology and cancer. Moreover, increasing numbers of young scientists and students are currently and actively working on BMA within their research projects. These developments led to the foundation of the International Bone Marrow Adiposity Society (BMAS), with the goal to promote BMA knowledge worldwide, and to train new generations of researchers interested in studying this field. Among the many initiatives supported by BMAS, there is the BMAS Summer School, inaugurated in 2021 and now at its second edition. The aim of the BMAS Summer School 2023 was to educate and train students by disseminating the latest advancement on BMA. Moreover, Summer School 2023 provided suggestions on how to write grants, deal with negative results in science, and start a laboratory, along with illustrations of alternative paths to academia. The event was animated by constructive and interactive discussions between early-career researchers and more senior scientists. In this report, we highlight key moments and lessons learned from the event.
- Klíčová slova
- Adipocytes, Bone marrow stromal cells, Career development, Skeletal stem cells, Young investigators,
- MeSH
- adipozita * MeSH
- kostní dřeň * MeSH
- lidé MeSH
- školy MeSH
- tuková tkáň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The first International Summer School on Bone Marrow Adiposity was organized by members of Bone Marrow Adiposity Society and held virtually on September 6-8 2021. The goal of this meeting was to bring together young scientists interested in learning about bone marrow adipose tissue biology and pathology. Fifty-two researchers from different backgrounds and fields, ranging from bone physiopathology to adipose tissue biology and hematology, participated in the summer school. The meeting featured three keynote lectures on the fundamentals of bone marrow adiposity, three scientific workshops on technical considerations in studying bone marrow adiposity, and six motivational and career development lectures, spanning from scientific writing to academic career progression. Moreover, twenty-one participants presented their work in the form of posters. In this report we highlight key moments and lessons learned from the event.
- Klíčová slova
- BMSC – bone marrow stromal cells, bone marrow adipocytes, bone marrow adipose tissue (BMAT), bone marrow adiposity, career development, histology, imaging technique, metabolism,
- MeSH
- adipozita * MeSH
- kostní dřeň * MeSH
- lidé MeSH
- obezita MeSH
- roční období MeSH
- školy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Marrow cavities in all bones of newborn mammals contain haematopoietic tissue and stromal microenvironment that support haematopoiesis (haematopoietic microenvironment), known as red bone marrow (BM). From the early postnatal period onwards, the haematopoietic microenvironment, mainly in tubular bones of the extremities, is replaced by mesenchymal cells that accumulate lipid drops, known as yellow BM, whereas haematopoietic tissue gradually disappears. We analysed the ability of mesenchymal cell progenitors in red and yellow BM to produce bone and haematopoietic microenvironment in vivo after transplantation into normal or haematopoietically deficient (irradiated and old) recipients. We found that (1) normal substitution of red with yellow BM results from a gradual loss of mesenchymal stem cells (MSCs) capable of developing bone and haematopoietic microenvironment; (2) the mesenchymal cell population in tubular bones still containing active haematopoietic tissue gradually becomes depleted of MSCs, starting from a young age; (3) haematopoietic microenvironment is incapable of self-maintenance and its renewal depends on the presence of precursor cells; (4) the mesenchymal cell population remaining in areas with yellow BM contains cells able to develop functionally active haematopoietic microenvironment in conditions of haematopoietic insufficiency. Our data also indicate the possible existence of bi-potential stromal precursor cells producing either bone in normal, or bone together with active haematopoietic microenvironment in irradiated or old recipients. This study opens a spectrum of opportunities for the extension of haematopoietic territories by substituting the fat contents of BM cavities with haematopoietic tissue, thereby improving haematopoiesis compromised by cytotoxic treatments, irradiation, ageing, etc.
- MeSH
- buňky kostní dřeně cytologie metabolismus fyziologie MeSH
- hematopoetické kmenové buňky cytologie metabolismus fyziologie MeSH
- kostní dřeň metabolismus fyziologie MeSH
- krysa rodu Rattus MeSH
- mezenchymální kmenové buňky cytologie metabolismus fyziologie MeSH
- transplantace mezenchymálních kmenových buněk MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH