Engineering optimization
Dotaz
Zobrazit nápovědu
Optimal Power Flow (OPF) is a critical challenge in electrical engineering, necessitating efficient and resilient optimization techniques for successful power distribution management. This study presents COGWO, an innovative hybrid metaheuristic that integrates the Grey Wolf Optimizer (GWO) with the Cuckoo Optimization Algorithm (COA) to enhance convergence quality and solution resilience. Before its implementation in OPF issues, the suggested technique was thoroughly verified against standard engineering problems in CEC2020, continuously surpassing several state-of-the-art methods. Subsequently, COGWO was utilized to tackle OPF issues in the IEEE 30-bus and 118-bus systems, accounting for the fluctuation of renewable energy sources (RESs), such as wind and solar, in conjunction with traditional power network configurations. The method exhibits an optimal balance between exploration and exploitation, successfully minimizing fuel costs, power loss, voltage variation, and emissions, even in the presence of intricate non-convex and non-smooth optimization functions. A comparative examination with COA, GWO, and other modern metaheuristics demonstrates the advantage of COGWO in attaining high-quality global solutions characterized by improved solution stability and convergence speed. When it comes to optimizing power systems on a grand scale, COGWO is an attractive solution due to its computational efficiency, flexibility, and resilience.
- Klíčová slova
- COGWO, Cuckoo optimization algorithm, Engineering optimization, Grey Wolf Optimizer, Multi-objective OPF, Renewable energy sources (RESs).,
- Publikační typ
- časopisecké články MeSH
The whale optimization algorithm (WOA) is a widely used metaheuristic optimization approach with applications in various scientific and industrial domains. However, WOA has a limitation of relying solely on the best solution to guide the population in subsequent iterations, overlooking the valuable information embedded in other candidate solutions. To address this limitation, we propose a novel and improved variant called Pbest-guided differential WOA (PDWOA). PDWOA combines the strengths of WOA, particle swarm optimizer (PSO), and differential evolution (DE) algorithms to overcome these shortcomings. In this study, we conduct a comprehensive evaluation of the proposed PDWOA algorithm on both benchmark and real-world optimization problems. The benchmark tests comprise 30-dimensional functions from CEC 2014 Test Functions, while the real-world problems include pressure vessel optimal design, tension/compression spring optimal design, and welded beam optimal design. We present the simulation results, including the outcomes of non-parametric statistical tests including the Wilcoxon signed-rank test and the Friedman test, which validate the performance improvements achieved by PDWOA over other algorithms. The results of our evaluation demonstrate the superiority of PDWOA compared to recent methods, including the original WOA. These findings provide valuable insights into the effectiveness of the proposed hybrid WOA algorithm. Furthermore, we offer recommendations for future research to further enhance its performance and open new avenues for exploration in the field of optimization algorithms. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/PDWOA.
Optimization is an important and fundamental challenge to solve optimization problems in different scientific disciplines. In this paper, a new stochastic nature-inspired optimization algorithm called Pelican Optimization Algorithm (POA) is introduced. The main idea in designing the proposed POA is simulation of the natural behavior of pelicans during hunting. In POA, search agents are pelicans that search for food sources. The mathematical model of the POA is presented for use in solving optimization issues. The performance of POA is evaluated on twenty-three objective functions of different unimodal and multimodal types. The optimization results of unimodal functions show the high exploitation ability of POA to approach the optimal solution while the optimization results of multimodal functions indicate the high ability of POA exploration to find the main optimal area of the search space. Moreover, four engineering design issues are employed for estimating the efficacy of the POA in optimizing real-world applications. The findings of POA are compared with eight well-known metaheuristic algorithms to assess its competence in optimization. The simulation results and their analysis show that POA has a better and more competitive performance via striking a proportional balance between exploration and exploitation compared to eight competitor algorithms in providing optimal solutions for optimization problems.
- Klíčová slova
- nature inspired, optimization, optimization problem, pelican, population-based algorithm, stochastic, swarm intelligence,
- MeSH
- algoritmy * MeSH
- počítačová simulace MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
Metaheuristic optimization algorithms play an essential role in optimizing problems. In this article, a new metaheuristic approach called the drawer algorithm (DA) is developed to provide quasi-optimal solutions to optimization problems. The main inspiration for the DA is to simulate the selection of objects from different drawers to create an optimal combination. The optimization process involves a dresser with a given number of drawers, where similar items are placed in each drawer. The optimization is based on selecting suitable items, discarding unsuitable ones from different drawers, and assembling them into an appropriate combination. The DA is described, and its mathematical modeling is presented. The performance of the DA in optimization is tested by solving fifty-two objective functions of various unimodal and multimodal types and the CEC 2017 test suite. The results of the DA are compared to the performance of twelve well-known algorithms. The simulation results demonstrate that the DA, with a proper balance between exploration and exploitation, produces suitable solutions. Furthermore, comparing the performance of optimization algorithms shows that the DA is an effective approach for solving optimization problems and is much more competitive than the twelve algorithms against which it was compared to. Additionally, the implementation of the DA on twenty-two constrained problems from the CEC 2011 test suite demonstrates its high efficiency in handling optimization problems in real-world applications.
- Klíčová slova
- drawer, exploitation, exploration, human-inspired methods, optimization,
- Publikační typ
- časopisecké články MeSH
Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalyzing a five-step chemical conversion. Kinetic models of pathways with wild-type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one-pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.
- Klíčová slova
- biocatalysis, biotransformations, kinetic modeling, multienzyme reaction, stoichiometry optimization,
- MeSH
- algoritmy MeSH
- biokatalýza * MeSH
- chemické modely MeSH
- enzymy chemie MeSH
- kinetika MeSH
- proteinové inženýrství MeSH
- průběh práce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enzymy MeSH
A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO's mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.
- Klíčová slova
- bio-inspired, exploitation, exploration, green anaconda, metaheuristic, optimization,
- Publikační typ
- časopisecké články MeSH
This article introduces a new metaheuristic algorithm called the Serval Optimization Algorithm (SOA), which imitates the natural behavior of serval in nature. The fundamental inspiration of SOA is the serval's hunting strategy, which attacks the selected prey and then hunts the prey in a chasing process. The steps of SOA implementation in two phases of exploration and exploitation are mathematically modeled. The capability of SOA in solving optimization problems is challenged in the optimization of thirty-nine standard benchmark functions from the CEC 2017 test suite and CEC 2019 test suite. The proposed SOA approach is compared with the performance of twelve well-known metaheuristic algorithms to evaluate further. The optimization results show that the proposed SOA approach, due to the appropriate balancing exploration and exploitation, is provided better solutions for most of the mentioned benchmark functions and has superior performance compared to competing algorithms. SOA implementation on the CEC 2011 test suite and four engineering design challenges shows the high efficiency of the proposed approach in handling real-world optimization applications.
- Klíčová slova
- bio-inspired, engineering systems, exploitation, exploration, metaheuristic, optimization, serval,
- Publikační typ
- časopisecké články MeSH
This article's innovation and novelty are introducing a new metaheuristic method called mother optimization algorithm (MOA) that mimics the human interaction between a mother and her children. The real inspiration of MOA is to simulate the mother's care of children in three phases education, advice, and upbringing. The mathematical model of MOA used in the search process and exploration is presented. The performance of MOA is assessed on a set of 52 benchmark functions, including unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, and the CEC 2017 test suite. The findings of optimizing unimodal functions indicate MOA's high ability in local search and exploitation. The findings of optimization of high-dimensional multimodal functions indicate the high ability of MOA in global search and exploration. The findings of optimization of fixed-dimension multi-model functions and the CEC 2017 test suite show that MOA with a high ability to balance exploration and exploitation effectively supports the search process and can generate appropriate solutions for optimization problems. The outcomes quality obtained from MOA has been compared with the performance of 12 often-used metaheuristic algorithms. Upon analysis and comparison of the simulation results, it was found that the proposed MOA outperforms competing algorithms with superior and significantly more competitive performance. Precisely, the proposed MOA delivers better results in most objective functions. Furthermore, the application of MOA on four engineering design problems demonstrates the efficacy of the proposed approach in solving real-world optimization problems. The findings of the statistical analysis from the Wilcoxon signed-rank test show that MOA has a significant statistical superiority compared to the twelve well-known metaheuristic algorithms in managing the optimization problems studied in this paper.
- Publikační typ
- časopisecké články MeSH
This article presents a comprehensively state-of-the-art investigation of the engineering applications utilized by binary metaheuristic algorithms. Surveyed work is categorized based on application scenarios and solution encoding, and describes these algorithms in detail to help researchers choose appropriate methods to solve related applications. It is seen that transfer function is the main binary coding of metaheuristic algorithms, which usually adopts Sigmoid function. Among the contributions presented, there were different implementations and applications of metaheuristic algorithms, or the study of engineering applications by different objective functions such as the single- and multi-objective problems of feature selection, scheduling, layout and engineering structure optimization. The article identifies current troubles and challenges by the conducted review, and discusses that novel binary algorithm, transfer function, benchmark function, time-consuming problem and application integration are need to be resolved in future.
- Klíčová slova
- Binary optimization, Engineering applications, Metaheuristic algorithms,
- Publikační typ
- časopisecké články MeSH
Balancing diversity and convergence among solutions in many-objective optimization is challenging, particularly in high-dimensional spaces with conflicting objectives. This paper presents the Many-Objective Marine Predator Algorithm (MaOMPA), an adaptation of the Marine Predators Algorithm (MPA) specifically enhanced for many-objective optimization tasks. MaOMPA integrates an elitist, non-dominated sorting and crowding distance mechanism to maintain a well-distributed set of solutions on the Pareto front. MaOMPA improves upon traditional metaheuristic methods by achieving a robust balance between exploration and exploitation using the predator-prey interaction model. The algorithm underwent evaluation on various benchmarks together with complex real-world engineering problems where it showed superior outcomes when compared against state-of-the-art generational distance and hypervolume and coverage metrics. Engineers and researchers can use MaOMPA as an effective reliable tool to address complex optimization scenarios in engineering design. The MaOMPA source code is available at https://github.com/kanak02/MaOMPA .
- Klíčová slova
- Convergence, Diversity, Information feedback mechanism, Many-objective optimization, Marine predator algorithm, Metaheuristic algorithm,
- MeSH
- algoritmy * MeSH
- potravní řetězec * MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH