Greenland Dotaz Zobrazit nápovědu
Subglacial environments provide conditions suitable for the microbial production of methane, an important greenhouse gas, which can be released from beneath the ice as a result of glacial melting. High gaseous methane emissions have recently been discovered at Russell Glacier, an outlet of the southwestern margin of the Greenland Ice Sheet, acting not only as a potential climate amplifier but also as a substrate for methane consuming microorganisms. Here, we describe the composition of the microbial assemblage exported in meltwater from the methane release hotspot at Russell Glacier and its changes over the melt season and as it travels downstream. We found that a substantial part (relative abundance 27.2% across the whole dataset) of the exported assemblage was made up of methylotrophs and that the relative abundance of methylotrophs increased as the melt season progressed, likely due to the seasonal development of the glacial drainage system. The methylotrophs were dominated by representatives of type I methanotrophs from the Gammaproteobacteria; however, their relative abundance decreased with increasing distance from the ice margin at the expense of type II methanotrophs and/or methylotrophs from the Alphaproteobacteria and Betaproteobacteria. Our results show that subglacial methane release hotspot sites can be colonized by microorganisms that can potentially reduce methane emissions.
- Klíčová slova
- Greenland Ice Sheet, Methanotrophs, Methylotrophs, Subglacial environment,
- MeSH
- ledový příkrov * mikrobiologie MeSH
- methan * analýza MeSH
- podnebí MeSH
- roční období MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- methan * MeSH
Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here, we present joint 16S rRNA gene and 16S rRNA (cDNA) comparison of input (snow), storage (cryoconite) and output (supraglacial stream water) habitats across the Dark Zone over the melt season. We reveal that all three Dark Zone communities have a preponderance of rare taxa exhibiting high protein synthesis potential (PSP). Furthermore, taxa with high PSP represent highly connected 'bottlenecks' within community structure, consistent with their roles as metabolic hubs. Finally, low abundance-high PSP taxa affiliated with Methylobacterium within snow and stream water suggest a novel role for Methylobacterium in the carbon cycle of Greenlandic snowpacks, and importantly, the export of potentially active methylotrophs to the bed of the Greenland Ice Sheet. By comparing the dynamics of bulk and potentially active microbiota in the Dark Zone of the Greenland Ice Sheet, we provide novel insights into the mechanisms and impacts of the microbial colonization of this critical region of our melting planet.
- Klíčová slova
- 16S rRNA, Greenland, cryoconite, rare biosphere, snow, supraglacial,
- MeSH
- ekosystém MeSH
- koloběh uhlíku fyziologie MeSH
- ledový příkrov mikrobiologie MeSH
- Methylobacterium fyziologie MeSH
- mikrobiota fyziologie MeSH
- RNA ribozomální 16S genetika MeSH
- roční období MeSH
- sníh mikrobiologie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
DDT isomers were detected in all the liver and muscle samples of Greenland sharks Somniosus microcephalus (n = 15) caught in Greenland seawaters. The mean concentrations of ΣDDTs (sum of o,p' and p,p' DDT, DDD, and DDE isomers) were 1094 ± 818 ng/g lipid weight (lw) in the muscle and 761 ± 416 ng/g lw in the liver. The p,p'-DDE accounted for 48% ± 41% and 53% ± 54% of the total DDT residue in the white muscle and liver, respectively. The lipid content was 48% ± 10% in the muscle and 43% ± 17% in the liver. Female sharks showed the highest concentrations of ΣDDTs. The youngest shark showed higher concentrations of ΣDDTs in the liver than the older sharks. To our knowledge, this is one of the few investigations on DDT levels in S. microcephalus where concentrations were correlated to lipid content and sex/size.
- Klíčová slova
- DDT isomers, Gender differences, Greenland shark, Lipid content, Size differences,
- MeSH
- chemické látky znečišťující vodu analýza MeSH
- DDT analýza MeSH
- játra chemie MeSH
- kosterní svaly chemie MeSH
- monitorování životního prostředí * MeSH
- mořská voda MeSH
- žraloci * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- DDT MeSH
The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques, we demonstrate that interstitial water flow is slow (~10-2 m d-1), while flow cytometry enumeration reveals this pathway delivers 5 × 108 cells m-2 d-1 to supraglacial streams, equivalent to a carbon flux up to 250 g km-2 d-1. We infer that cellular carbon accumulation in the weathering crust exceeds fluvial export, promoting biomass sequestration, enhanced carbon cycling, and biological albedo reduction. We estimate that up to 37 kg km-2 of cellular carbon is flushed from the weathering crust environment of the western Greenland Ice Sheet each summer, providing an appreciable flux to support heterotrophs and methanogenesis at the bed.
- MeSH
- biomasa * MeSH
- hydrologie MeSH
- koloběh uhlíku MeSH
- ledový příkrov chemie mikrobiologie MeSH
- počasí MeSH
- počet mikrobiálních kolonií MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- uhlík MeSH
The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions.
- Klíčová slova
- Greenland, bacteria, biogeography, cryoconite, diversity, ice,
- MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- ledový příkrov mikrobiologie MeSH
- mikrobiota genetika MeSH
- polymerázová řetězová reakce MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Sphingobacterium genetika izolace a purifikace MeSH
- Synechococcus genetika izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 104 cells mL-1 and we estimate that ∼1.02 × 1021 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world.
- MeSH
- Actinobacteria izolace a purifikace MeSH
- Archaea izolace a purifikace MeSH
- Bacteroidetes izolace a purifikace MeSH
- estuár MeSH
- ledový příkrov mikrobiologie MeSH
- mikrobiota MeSH
- pohyb vody MeSH
- Proteobacteria izolace a purifikace MeSH
- řeky mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Grónsko MeSH
Albedo-a primary control on surface melt-varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25 km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities-an admixture of dust, black carbon and pigmented algae-explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself. Crevassing and supraglacial water also drive albedo reduction but due to their limited extent, explain just 12 and 15% of the observed variability respectively. Cryoconite, concentrated in large holes or fluvial deposits, is the darkest surface type but accounts for <1% of the area and has minimal impact. We propose that the ongoing emergence and dispersal of distributed impurities, amplified by enhanced ablation and biological activity, will drive future expansion of Greenland's dark zone.
- MeSH
- ledový příkrov * MeSH
- monitorování životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (10(2)-10(7) cells ml(-1)) and mineral particle (0.1-100 mg ml(-1)) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 10(3) to ~ 2 × 10(6) cells ml(-1) while dust concentrations ranged from 0.01 to 2 mg ml(-1). The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS.
- Klíčová slova
- Greenland Ice Sheet, epifluorescence microscopy, flow cytometry, glacier ice, microbial abundance, multivariate analysis, quantitative PCR,
- Publikační typ
- časopisecké články MeSH
Tropospheric nitrate levels are predicted to increase throughout the 21st century, with potential effects on terrestrial ecosystems, including the Greenland ice sheet (GrIS). This study considers the impacts of elevated nitrate concentrations on the abundance and composition of dominant bulk and active prokaryotic communities sampled from in situ nitrate fertilization plots on the GrIS surface. Nitrate concentrations were successfully elevated within sediment-filled meltwater pools, known as cryoconite holes; however, nitrate additions applied to surface ice did not persist. Estimated bulk and active cryoconite community cell abundance was unaltered by nitrate additions when compared to control holes using a quantitative PCR approach, and nitrate was found to have a minimal affect on the dominant 16S rRNA gene-based community composition. Together, these results indicate that sampled cryoconite communities were not nitrate limited at the time of sampling. Instead, temporal changes in biomass and community composition were more pronounced. As these in situ incubations were short (6 weeks), and the community composition across GrIS surface ice is highly variable, we suggest that further efforts should be considered to investigate the potential long-term impacts of increased nitrate across the GrIS.
- MeSH
- dusičnany metabolismus MeSH
- fylogeneze MeSH
- ledový příkrov mikrobiologie MeSH
- prokaryotické buňky klasifikace metabolismus MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- společenstvo účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- dusičnany MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.
- Klíčová slova
- Greenland, climate change, extracellular enzyme activities, microbial communities, permafrost-affected soils,
- Publikační typ
- časopisecké články MeSH