The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60-70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120-130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends--the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains.
- MeSH
- antiinfekční látky chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- bromidy chemie farmakologie MeSH
- Candida účinky léků MeSH
- kovové nanočástice chemie MeSH
- polymery chemie MeSH
- sloučeniny stříbra chemie farmakologie MeSH
- stříbro chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antiinfekční látky MeSH
- bromidy MeSH
- polymery MeSH
- silver bromide MeSH Prohlížeč
- sloučeniny stříbra MeSH
- stříbro MeSH
The use of nanoscaled materials is rapidly increasing, however, their possible ecotoxicological effects are still not precisely known. This work constitutes the first complex study focused on in vivo evaluation of the acute and chronic toxic effects and toxic limits of silver nanoparticles (NPs) on the eukaryotic organism Drosophila melanogaster. For the purpose of this study, silver NPs were prepared in the form of solid dispersion using microencapsulation method, where mannitol was used as an encapsulation agent. This newly prepared solid dispersion with a high concentration of silver NPs was exploited to prepare the standard Drosophila culture medium at a silver concentration range from 10 mg·L(-1) to 100 mg·L(-1) of Ag in the case of the acute toxicity testing and at a concentration equal to 5 mg·L(-1) in the case of the chronic toxicity testing. The acute toxic effect of silver NPs on Drosophila melanogaster was observed for the silver concentration equal to 20 mg·L(-1). At this silver concentration, 50% of the tested flies were unable to leave the pupae, and they did not finish their developmental cycle. Chronic toxicity of silver NPs was assessed by a long-term exposure of overall eight filial generations of Drosophila melanogaster to silver NPs. The long-term exposure to silver NPs influenced the fertility of Drosophila during the first three filial generations, nevertheless the fecundity of flies in subsequent generations consequently increased up to the level of the flies from the control sample due to the adaptability of flies to the silver NPs exposure.
- MeSH
- Drosophila melanogaster účinky léků MeSH
- fenotyp MeSH
- fertilita účinky léků MeSH
- kovové nanočástice toxicita MeSH
- kukla účinky léků MeSH
- larva účinky léků MeSH
- stříbro toxicita MeSH
- testy akutní toxicity MeSH
- testy chronické toxicity MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- stříbro MeSH
One of the most common neurological diseases is epilepsy, which not only negatively affects the quality of people's life but also may lead to life-threatening situations when its symptoms such as seizures cannot be controlled medically. A very serious problem to be overcame is the untreatable form of this disease, which cannot be cured by any currently available medicines. Cannabidiol, which is a natural product obtained from Cannabis Sativa, brings a new hope to people suffering from drug-resistant epilepsy. However, the hydrophobic character of this compound significantly lowers its clinical efficiency. One of the promising methods of this substance bioactivity increase is delivery through the skin tissue. In this article, a new type of advanced transdermal systems based on chitosan and ZnO nanoparticles (NPs) has been developed according to Sustained Development principles. The chemical modification of the biopolymer confirmed by FT-IR method resulted in the preparation of the material with great swelling abilities and appropriate water vapor permeability. Obtained nanoparticles were investigated over their crystalline structure and morphology and their positive impact on drug loading capacity and cannabidiol controlled release was proved. The novel biomaterials were confirmed to have conductive properties and not be cytotoxic to L929 mouse fibroblasts.
- Klíčová slova
- cannabidiol, chitosan, drug delivery,
- Publikační typ
- časopisecké články MeSH
Sarcosine is an amino acid that is formed by methylation of glycine and is present in trace amounts in the body. Increased sarcosine concentrations in blood plasma and urine are manifested in sarcosinemia and in some other diseases such as prostate cancer. For this purpose, sarcosine detection using the nanomedicine approach was proposed. In this study, we have prepared superparamagnetic iron oxide nanoparticles (SPIONs) with different modified surface area. Nanoparticles (NPs) were modified by chitosan (CS), and sarcosine oxidase (SOX). SPIONs without any modification were taken as controls. Methods and Results: The obtained NPs were characterized by physicochemical methods. The size of the NPs determined by the dynamic light scattering method was as follows: SPIONs/Au/NPs (100⁻300 nm), SPIONs/Au/CS/NPs (300⁻700 nm), and SPIONs/Au/CS/SOX/NPs (600⁻1500 nm). The amount of CS deposited on the NP surface was found to be 48 mg/mL for SPIONs/Au/CS/NPs and 39 mg/mL for SPIONs/Au/CS/SOX/NPs, and repeatability varied around 10%. Pseudo-peroxidase activity of NPs was verified using sarcosine, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. For TMB, all NPs tested evinced substantial pseudo-peroxidase activity at 650 nm. The concentration of SPIONs/Au/CS/SOX/NPs in the reaction mixture was optimized to 0⁻40 mg/mL. Trinder reaction for sarcosine detection was set up at 510 nm at an optimal reaction temperature of 37 °C and pH 8.0. The course of the reaction was linear for 150 min. The smallest amount of NPs that was able to detect sarcosine was 0.2 mg/well (200 µL of total volume) with the linear dependence y = 0.0011x - 0.0001 and the correlation coefficient r = 0.9992, relative standard deviation (RSD) 6.35%, limit of detection (LOD) 5 µM. The suggested method was further validated for artificial urine analysis (r = 0.99, RSD 21.35%, LOD 18 µM). The calculation between the detected and applied concentrations showed a high correlation coefficient (r = 0.99). NPs were tested for toxicity and no significant growth inhibition was observed in any model system (S. cerevisiae, S. aureus, E. coli). The hemolytic activity of the prepared NPs was similar to that of the phosphate buffered saline (PBS) control. The reaction system was further tested on real urine specimens. Conclusion: The proposed detection system allows the analysis of sarcosine at micromolar concentrations and to monitor changes in its levels as a potential prostate cancer marker. The whole system is suitable for low-cost miniaturization and point-of-care testing technology and diagnostic systems. This system is simple, inexpensive, and convenient for screening tests and telemedicine applications.
- Klíčová slova
- Trinder reaction, biomarker, biosensor, gold nanoparticles, personalized medicine, superparamagnetic iron oxide nanoparticles,
- MeSH
- chitosan chemie MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- hemolýza účinky léků MeSH
- individualizovaná medicína MeSH
- koncentrace vodíkových iontů MeSH
- křenová peroxidasa chemie MeSH
- lidé MeSH
- limita detekce MeSH
- magnetické nanočástice chemie ultrastruktura MeSH
- nádorové biomarkery moč MeSH
- nádory prostaty diagnóza moč MeSH
- oxidace-redukce MeSH
- reprodukovatelnost výsledků MeSH
- Saccharomyces cerevisiae účinky léků růst a vývoj MeSH
- sarkosin moč MeSH
- sarkosinoxidasa chemie MeSH
- Staphylococcus aureus účinky léků růst a vývoj MeSH
- velikost částic MeSH
- železité sloučeniny chemie MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan MeSH
- ferric oxide MeSH Prohlížeč
- křenová peroxidasa MeSH
- magnetické nanočástice MeSH
- nádorové biomarkery MeSH
- sarkosin MeSH
- sarkosinoxidasa MeSH
- železité sloučeniny MeSH
- zlato MeSH
The widespread use of silica nanoparticles (SiO2-NPs) in various industries, including chemical polishing, cosmetics, varnishes, medical, and food products, has increased the risk of their release into aquatic ecosystems. The toxic effects of small-size SiO2-NPs on the reproductive performance of zebrafish (Danio rerio) have yet to be widely studied. This study aimed to investigate the impact of chronic exposure to small-sized (35 ± 6 nm) SiO2-NPs on adult zebrafish through waterborne exposure to concentrations of 5 (SNP5), 10 (SNP10), 15 (SNP15), and 20 (SNP20) μg/L of SiO2-NPs for 28 days. Our results showed that SiO2-NPs significantly impacted several biochemical parameters, including cholesterol, triglycerides, LDL, HDL, total protein, albumin, urea levels, and alkaline phosphatase and aspartate aminotransferase activity. Cortisol and glucose levels in the SNP20 group significantly differed from the control group. All the exposed groups, apart from SNP5, experienced a significant increase in their total immunoglobulin levels and lysozyme activity. While there was a considerable increase in the activity of catalase and superoxide dismutase in all exposed groups, the expression of antioxidant genes did not appear to be affected. Furthermore, the expression level of il8 was significantly higher in SNP5 and SNP10 than in other treatments. Exposure to SiO2-NPs caused a decrease in gonad weight, absolute fecundity, and larval survival rate, particularly in the SNP20 group. The present study indicates that SiO2-NPs can harm zebrafish and thus further research is necessary to assess their health and environmental risks.
- Klíčová slova
- Environmental risks, Gene expression, Nanotoxicology, Reproductive toxicity, Silica nanoparticles,
- MeSH
- dánio pruhované * MeSH
- ekosystém MeSH
- nanočástice * toxicita MeSH
- oxid křemičitý toxicita MeSH
- oxidační stres MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid křemičitý MeSH
The aim of the present research work was to develop halogen and formaldehyde-free, durable flame retardant fabric along with multifunctional properties and to find the optimal conditions and parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were grown onto 100% cotton fabric using the sonochemical method. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) were used as precursors. After ZnO NPs growth, N-Methylol dimethylphosphonopropionamide (MDPA) flame retardant was applied in the presence of 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) as cross-linkers using the conventional pad-dry-cure method. Induced coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the deposited amount of Zn and phosphorous (P) contents. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were employed to determine the surface morphology and characterization of the developed samples. Furthermore, the thermal degradation of the untreated and treated samples was investigated by thermogravimetric analysis (TGA). Furthermore, the vertical flame retardant test, limiting oxygen index (LOI), ultraviolet protection factor (UPF), and antibacterial activity of samples were examined. The developed samples showed excellent results for flame retardancy (i.e., 39 mm char length, 0 s after flame time, 0 s after glow time), 32.2 LOI, 143.76 UPF, and 100% antibacterial activity.
- Klíčová slova
- ZnO, antibacterial, flame retardants, metal oxides, nanoparticles,
- Publikační typ
- časopisecké články MeSH
Wastewater rich in heavy metals and organic compounds represents one of the essential environmental pollutants. Therefore, a practical approach is to fabricate eco-friendly polymer-based systems with a high ability to absorb pollutants. Herein, bionanocomposites consisting of chitosan (Cs) grafted by various monomers, such as acrylamide (Am), acrylic acid (AA), and 4-styrene sulfonic acid (SSA), and hybrid nanoparticles of graphene oxide/titanium dioxide nanoparticles (GO@TiO2-NPs) were fabricated. The prepared nanomaterials and bionanocomposites characterized via various tools. The data illustrated that the prepared GO had a thickness of 10 nm and TiO2-NPs had a diameter of 25 nm. In addition, the grafted chitosan (gCs) using Am and SSA had the largest surface area (gCs2; 22.89 nm) and its bionanocomposite (NC5; 104.79 nm). In addition, the sorption ability of the 0.15 g of prepared bionanocomposites to the (100 mg/L) of lead ions (Pb2+) and (25 mg/L) of basic-red 46 (BR46) under various conditions has been studied. The results showed that gCs3 and NC5 had the highest adsorption of Pb2+ (79.54 %) and BR46 (79.98 %), respectively. The kinetic study results of the sorbents obeyed the Pseudo second-order model. In contrast, the isothermal study followed the Freundlich adsorption model for Pb2+ and the Langmuir adsorption model for BR46.
- Klíčová slova
- Chitosan, Dye, adsorption, Graphene oxide, Heavy metal, Titanium dioxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
Selenium nanoparticle modified surfaces attract increasing attention in the field of tissue engineering. Selenium exhibits strong anticancer, antibacterial and anti-inflammatory properties and it maintains relatively low off-target cytotoxicity. In our paper, we present the fabrication, characterization and cytocompatibility of titanium oxide (TiO2) nanotube surface decorated with various surface densities of chemically synthesized selenium nanoparticles. To evaluate antibacterial and anti-cancer properties of such nanostructured surface, gram negative bacteria E. coli, cancerous osteoblast like MG-63 cells and non-cancerous fibroblast NIH/3T3 were cultured on designed surfaces. Our results suggested that selenium nanoparticles improved antibacterial properties of titanium dioxide nanotubes and confirmed the anticancer activity towards MG-63 cells, with increasing surface density of nanoparticles. Further, the selenium decorated TiO2 nanotubes suggested deteriorating effect on the cell adhesion and viability of non-cancerous NIH/3T3 cells. Thus, we demonstrated that selenium nanoparticles decorated TiO2 nanotubes synthesized using sodium selenite and glutathione can be used to control bacterial infections and prevent the growth of cancerous cells. However, the higher surface density of nanoparticles adsorbed on the surface was found to be cytotoxic for non-cancerous NIH/3T3 cells and thus it might complicate the integration of biomaterial into the host tissue. Therefore, an optimal surface density of selenium nanoparticles must be found to effectively kill bacteria and cancer cells, while remaining favorable for normal cells.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- antitumorózní látky chemie farmakologie MeSH
- buňky NIH 3T3 MeSH
- Escherichia coli účinky léků MeSH
- infekce vyvolané Escherichia coli farmakoterapie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- nanočástice * chemie ultrastruktura MeSH
- nanotrubičky * chemie ultrastruktura MeSH
- osteoblasty účinky léků MeSH
- selen chemie farmakologie MeSH
- titan chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- antitumorózní látky MeSH
- selen MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
Bone tissue is the second tissue to be replaced. Annually, over four million surgical treatments are performed. Tissue engineering constitutes an alternative to autologous grafts. Its application requires three-dimensional scaffolds, which mimic human body environment. Bone tissue has a highly organized structure and contains mostly inorganic components. The scaffolds of the latest generation should not only be biocompatible but also promote osteoconduction. Poly (lactic acid) nanofibers are commonly used for this purpose; however, they lack bioactivity and do not provide good cell adhesion. Chitosan is a commonly used biopolymer which positively affects osteoblasts' behavior. The aim of this article was to prepare novel hybrid 3D scaffolds containing nanohydroxyapatite capable of cell-response stimulation. The matrixes were successfully obtained by PLA electrospinning and microwave-assisted chitosan crosslinking, followed by doping with three types of metallic nanoparticles (Au, Pt, and TiO2). The products and semi-components were characterized over their physicochemical properties, such as chemical structure, crystallinity, and swelling degree. Nanoparticles' and ready biomaterials' morphologies were investigated by SEM and TEM methods. Finally, the scaffolds were studied over bioactivity on MG-63 and effect on current-stimulated biomineralization. Obtained results confirmed preparation of tunable biomimicking matrixes which may be used as a promising tool for bone-tissue engineering.
- Klíčová slova
- biotechnology, properties of nanoparticles–reinforced polymers, smart hybrid materials,
- Publikační typ
- časopisecké články MeSH
This work aims to demonstrate the potential of pulsed laser ablation synthesis (PLA) of tellurium nanoparticles (Te NPs) for use in matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) applications. An experimental laboratory setup for PLA synthesis of fresh Te NPs was designed to prevent unwanted aggregation of uncoated Te NPs and avoid the need to use additional modifiers. Performing pulsed laser ablation synthesis in liquid (PLAL) using acetone was found to be the optimal way of preparing Te NPs. Another possibility is to use commercially available laser ablation devices for laser ablation - inductively coupled plasma mass spectrometry (LA-ICP-MS) to perform PLA in a helium atmosphere, but this approach is less efficient and results in the formation of unwanted larger particles. The prepared Te NPs were studied using the transmission electron microscopy (TEM) and dynamic light scattering (DLS) methods. TEM images showed the formation of Te NP nanochains composed of many crystallized Te NPs with sizes ranging from 8 to 15 nm. The various size distributions of the synthesized Te NPs identified using the DLS method correspond to the size distributions of aggregations rather than individual Te NPs. The synthesized Te NPs were used for a pilot study of their possible use with the MALDI-MS technique. An important effect was observed when Te NPs were used to perform a MALDI-MS analysis of the α-cyclodextrin (α-CD) and cucurbit[7]uril (CB7) macrocycles, which consisted in a decline in the formation of matrix adducts. Furthermore, several changes in MALDI-MS mass spectra of intact cells and a positive effect of Te NPs on the crystallization of the MALDI-MS matrix were observed.
- Klíčová slova
- MALDI-MS, PLA, Pulsed laser ablation synthesis, Te NPs, Tellurium nanoparticles,
- Publikační typ
- časopisecké články MeSH