adipose Dotaz Zobrazit nápovědu
BACKGROUND AND AIMS: Macrophages play important roles in adipose tissue inflammation and its consequences. Unfortunately, a detailed description of the macrophage phenotypes in different human adipose tissues is not available. SUBJECTS AND METHODS: Subcutaneous, visceral and perivascular adipose tissues were obtained from 52 living kidney donors during live donor nephrectomy. Stromal vascular fractions were isolated, and the macrophage phenotypes were analyzed by flow cytometry using surface markers (CD14, CD16, CD36, and CD163). RESULTS: In addition to CD16 positivity, pro-inflammatory macrophages also display high scavenger receptor CD36 expression. The great majority of CD16 negative macrophages express the anti-inflammatory CD163 marker. The presence of pro-inflammatory macrophages was almost twice as high in visceral (p < 0.0001) and perivascular (p < 0.0001) adipose tissues than in subcutaneous tissue. This difference was substantially more pronounced in the postmenopausal women subgroup, consequentlly, the total difference was driven by this subgroup. CONCLUSION: We obtained detailed information about M1 and M2 macrophage phenotypes in human adipose tissue. The visceral and perivascular adipose tissues had substantially higher pro-inflammatory characteristics than the subcutaneous tissue. The higher proportion of pro-inflammatory macrophages in the visceral adipose tissue of postmenopausal women might be related to an increased cardiovascular risk.
- Klíčová slova
- Adipose tissue, Inflammation, Macrophages, Menopause,
- MeSH
- dárci tkání MeSH
- fenotyp MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy cytologie MeSH
- nitrobřišní tuk cytologie MeSH
- podkožní tuk cytologie MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Brown adipose tissue appeared in mammals with the development of homeothermy. In consequence of this, their organism became able to maintain constant body temperature independent on the thermal conditions of the surroundings. This tissue-contrary to the white adipose tissue-is distributed only in certain restricted portions of the body. The paper deals with actual literary data of morphology and function of brown adipose tissue.
Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.
- Klíčová slova
- adipose, angiogenesis, differentiation, stem, vascularization,
- MeSH
- buněčná diferenciace * MeSH
- fyziologická neovaskularizace * MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus fyziologie MeSH
- proliferace buněk * MeSH
- tuková tkáň cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Inflammatory bowel diseases (IBDs), chronic inflammatory disorders affecting the gastrointestinal tract, include Crohn's disease and ulcerative colitis. There are increasing clinical and experimental data showing that obesity, especially visceral adiposity, plays a substantial role in the pathogenesis of IBD. Obesity seems to be an important risk factor also for IBD disease severity and clinical outcomes. Visceral adipose tissue is an active multifunctional metabolic organ involved in lipid storage and immunological and endocrine activity. Bowel inflammation penetrates the surrounding adipose tissue along the mesentery. Mesenteric fat serves as a barrier to inflammation and controls immune responses to the translocation of gut bacteria. At the same time, mesenteric adipose tissue may be the principal source of cytokines and adipokines responsible for inflammatory processes associated with IBD. This review is particularly focusing on the potential role of adipokines in IBD pathogenesis and their possible use as promising therapeutic targets.
- Klíčová slova
- adipokines, inflammatory bowel disease, mesenteric fat, microbiome, visceral obesity,
- MeSH
- abdominální obezita imunologie metabolismus MeSH
- adipokiny metabolismus MeSH
- idiopatické střevní záněty imunologie metabolismus MeSH
- lidé MeSH
- nitrobřišní tuk imunologie metabolismus MeSH
- tuková tkáň imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adipokiny MeSH
OBJECTIVE: Interest in metabolites produced by adipose tissue has increased substantially in the past several decades. Previously regarded as an inert energy storage depot, adipose tissue is now viewed as a complex metabolically active organ with considerable impact on human health. The emerging field of mass spectrometry-based metabolomics presents a powerful tool for the study of processes in complex biological matrices including adipose tissue. RESULTS: A large number of structurally distinct metabolites can be analyzed to facilitate the investigation of differences between physiological and pathophysiological metabolic profiles associated with adipose tissue. Understanding the molecular basis of adipose tissue regulation can thereby provide insight into the monitoring of obesity-related metabolic disorders and lead to the development of novel diagnostic and prognostic biomarkers. CONCLUSIONS: This review provides the current state of knowledge, recent progress, and critical evaluation of metabolomics approaches in the context of white adipose tissue and obesity. An overview of basic principles and resources describing individual groups of metabolites analyzed in white adipose tissue and biological fluids is given. The focus is on metabolites that can serve as reliable biomarkers indicative of metabolic alterations associated with obesity.
- MeSH
- bílá tuková tkáň metabolismus MeSH
- lidé MeSH
- metabolom genetika MeSH
- obezita metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Cardiac surgery and cardiopulmonary bypass (CPB) have been shown to stimulate a systemic inflammatory response which has been associated with adverse postoperative outcomes. Adipose tissue, both epicardial (EAT) and subcutaneous (SAT), is a known source of inflammatory cytokines, but its role in the pathophysiology of surgery- and CPB-induced systemic inflammatory response has not been fully elucidated. Therefore, we conducted a study to establish levels of selected cytokines in EAT and SAT prior to and after surgery with CPB. METHODS: Adipose tissue samples were obtained from patients undergoing planned cardiac surgery on CPB. Samples from EAT and SAT were collected before and immediately after CPB. Levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), adipocyte fatty acid-binding protein (AFABP), leptin and adiponectin were determined by ELISA, which were adjusted for a total concentration of proteins in the individual samples. RESULTS: Samples from 77 patients (mean age 67.68 ± 11.5 years) were obtained and analysed. Leptin, adiponectin, TNF-α and AFABP were shown to decrease their concentrations statistically significantly in the EAT after CPB while no statistically significant drop was observed in the SAT. On the contrary, IL-6 showed only a slight and statistically insignificant decrease in the EAT after CPB and it was in the SAT where a statistically significant drop was observed. DISCUSSION: One of the most relevant findings of this study was the marked decrease in EAT levels of TNF-α, AFABP, leptin and adiponectin after the CPB termination. Our results suggest that EAT might serve as a pool of cytokines which are released into the circulation in reaction to surgery with CPB. Should these novel findings be confirmed, new strategies to assess and possibly reduce EAT contribution on adverse outcomes of cardiac surgery may be developed.
- Klíčová slova
- cardiopulmonary bypass, cytokines, epicardial adipose tissue, inflammation, subcutaneous adipose tissue, systemic inflammatory response,
- MeSH
- cytokiny metabolismus MeSH
- kardiopulmonální bypass metody MeSH
- lidé MeSH
- perikard metabolismus MeSH
- podkožní tuk metabolismus MeSH
- senioři MeSH
- tuková tkáň metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- cytokiny MeSH
1. Mitochondrial membrane of brown adipose tissue compared to that of liver possesses a very high activity of oxidative enzymes but a low activity of ATPase. 2. The polypeptide composition of the mitochondrial membranes proves that the above differences in enzyme activities are due to increased content of oxidative enzymes and decreased content of ATPase in brown adipose tissue. 3. The inhibition of ATPase of brown adipose tissue mitochondria by aurovertin, oligomycin and DCCD indicates modified proportions between the components of the ATPase complex. 4. The organization of brown adipose tissue mitochondrial membrane in relation to its thermogenic function is discussed.
- Klíčová slova
- ADIPOSE TISSUE *,
- MeSH
- lidé MeSH
- tuková tkáň * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1) has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1 to counteract the development of diet-induced obesity. METHODS: To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physiologically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions. RESULTS: The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations, in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistinguishable from that of mice totally devoid of UCP1. CONCLUSIONS: Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity development could be attained.
- Klíčová slova
- Adipostat, Beige adipose tissue, Body weight regulation, Diet-induced thermogenesis, Glucose homeostasis, UCP1,
- MeSH
- béžová tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- energetický metabolismus MeSH
- hnědá tuková tkáň * metabolismus MeSH
- lidé MeSH
- myši MeSH
- obezita * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Coronary artery disease is one of the most frequent causes of morbidity and mortality worldwide. It is even more prevalent in patients with type 2 diabetes mellitus who suffer from obesity and increased accumulation of epicardial fat with a possible contributing role in the development of coronary artery disease. We performed an MS-based lipidomic analysis of subcutaneous and epicardial adipose tissue in 23 patients with coronary artery disease stratified for the presence/absence of type 2 diabetes mellitus and a control group of 13 subjects aiming at identification of factors from epicardial fat contributing to the development of coronary artery disease. The samples of adipose tissues were obtained during elective cardiac surgery. They were extracted and analyzed with and without previous triacylglycerols separation by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Multivariate and univariate analyses were performed. Lipidomics data were correlated with biochemical parameters. We identified multiple changes in monoacylglycerols, diacylglycerols, triacylglycerols, glycerophosphatidylserines, glycerophosphatidylethanolamines, glycerophosphatidylcholines, ceramides, sphingomyelins, and derivatives of cholesterol. Observed changes included molecules with fatty acids with odd (15:0, 15:1, 17:0, 17:1) and even (10:0, 12:0, 14:0, 16:0, 16:1, 18:0, 18:1, 18:2, 20:4, 20:1, 22:0) fatty acids in both types of adipose tissue. More pronounced changes were detected in epicardial adipose tissue compared to subcutaneous adipose tissue of patients with coronary artery disease and type 2 diabetes. Lipidomic analysis of subcutaneous and epicardial adipose tissue revealed different profiles for patients with coronary artery disease and type 2 diabetes, which might be related to coronary artery disease and the presence of type 2 diabetes.
- Klíčová slova
- coronary artery disease, epicardial adipose tissue, lipidomics, subcutaneous adipose tissue, type 2 diabetes mellitus,
- MeSH
- diabetes mellitus 2. typu * MeSH
- lidé MeSH
- lipidy MeSH
- nemoci koronárních tepen * MeSH
- perikard MeSH
- podkožní tuk MeSH
- tuková tkáň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH