arthropod density Dotaz Zobrazit nápovědu
The relative roles of plants competing for resources versus top-down control of vegetation by herbivores, in turn impacted by predators, during early stages of tropical forest succession remain poorly understood. Here we examine the impact of insectivorous birds, bats, and ants exclusion on arthropods communities on replicated 5 × 5 m of pioneering early successional vegetation plots in lowland tropical forest gaps in Papua New Guinea. In plots from which focal taxa of predators were excluded we observed increased biomass of herbivorous and predatory arthropods, and increased density, and decreased diversity of herbivorous insects. However, changes in the biomass of plants, herbivores, and arthropod predators were positively correlated or uncorrelated between these three trophic levels and also between individual arthropod orders. Arthropod abundance and biomass correlated strongly with the plant biomass irrespective of the arthropods' trophic position, a signal of bottom-up control. Patterns in herbivore specialization confirm lack of a strong top-down control and were largely unaffected by the exclusion of insectivorous birds, bats, and ants. No changes of plant-herbivore interaction networks were detected except for decrease in modularity of the exclosure plots. Our results suggest weak top-down control of herbivores, limited compensation between arthropod and vertebrate predators, and limited intra-guild predation by birds, bats, and ants. Possible explanations are strong bottom-up control, a low activity of the higher order predators, especially birds, possibly also bats, in gaps, and continuous influx of herbivores from surrounding mature forest matrix.
- Klíčová slova
- cascading effects, intermediate predation, plant-arthropod herbivore networks, succession, top-down effects, tri-trophic interactions, tropical secondary forest,
- MeSH
- Chiroptera * MeSH
- členovci * MeSH
- Formicidae * MeSH
- lesy MeSH
- predátorské chování MeSH
- ptáci MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Birds, bats and ants are recognised as significant arthropod predators. However, empirical studies reveal inconsistent trends in their relative roles in top-down control across strata. Here, we describe the differences between forest strata in the separate effects of birds, bats and ants on arthropod densities and their cascading effects on plant damage. We implemented a factorial design to exclude vertebrates and ants in both the canopy and understorey. Additionally, we separately excluded birds and bats from the understorey using diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and assessed herbivory damage. Arthropods responded similarly to predator exclusion across forest strata, with a density increase of 81% on trees without vertebrates and 53% without both vertebrates and ants. Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod density or herbivory damage across strata. Our results reveal that the effects of birds and bats on arthropod density and herbivory damage are similar between the forest canopy and understorey in this temperate forest. In addition, ants were not found to be significant predators in our system. Furthermore, birds, bats and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining ecological balance across different strata of a temperate forest.
- Klíčová slova
- arthropod density, forest canopy, forest understorey, herbivory damage, predator exclosures, trophic cascades,
- MeSH
- býložravci MeSH
- Chiroptera * fyziologie MeSH
- členovci * fyziologie MeSH
- Formicidae * fyziologie MeSH
- hustota populace MeSH
- lesy * MeSH
- potravní řetězec MeSH
- predátorské chování MeSH
- ptáci * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
The interaction of arthropods with the environment and the management of their populations is a focus of the ecological agenda. Spatial autocorrelation and under-sampling may generate bias and, when they are ignored, it is hard to determine if results can in any way be trusted. Arthropod communities were studied during two seasons and using two methods: window and panel traps, in an area of ancient temperate lowland woodland of Zebracka (Czech Republic). The composition of arthropod communities was studied focusing on four site level variables (canopy openness, diameter in the breast height and height of tree, and water distance) and finally analysed using two approaches: with and without effects of spatial autocorrelation. I found that the proportion of variance explained by space cannot be ignored (≈20% in both years). Potential bias in analyses of the response of arthropods to site level variables without including spatial co-variables is well illustrated by redundancy analyses. Inclusion of space led to more accurate results, as water distance and tree diameter were significant, showing approximately the same ratio of explained variance and direction in both seasons. Results without spatial co-variables were much more disordered and were difficult to explain. This study showed that neglecting the effects of spatial autocorrelation could lead to wrong conclusions in site level studies and, furthermore, that inclusion of space may lead to more accurate and unambiguous outcomes. Rarefactions showed that lower sampling intensity, when appropriately designed, can produce sufficient results without exploitation of the environment.
- MeSH
- členovci fyziologie MeSH
- ekosystém MeSH
- lidé MeSH
- mokřady MeSH
- odběr biologického vzorku MeSH
- populační dynamika MeSH
- prostorová analýza * MeSH
- roční období MeSH
- statistické modely * MeSH
- stromy fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Freshwater ecosystems are increasingly impacted by pharmaceutical contaminants (PhACs) and climate change-induced warming. Yet, their joint effects on freshwater taxa remain unclear. This is partly due to poorly understood mechanisms linking the effects on (sub)individual scales to higher levels of ecological organisation. We investigated the responses of two aquatic arthropods, Asellus aquaticus and Cloeon dipterum, to environmentally realistic levels of a 15-PhAC mixture (total concentration: 2.9 µg/L) and warming (+4 °C above ambient) in outdoor pond mesocosms (1000 L) across winter and summer. We measured physiological traits (bioenergetic responses based on quantification of energy consumption and energy stored in proteins, sugars and lipids, and oxidative damage based on malondialdehyde [MDA] levels), population density and ecosystem functions (leaf litter decomposition and insect emergence). In winter, PhACs reduced energy availability and increased MDA levels. In contrast, PhACs increased energy availability and decreased MDA levels in summer. The stressors reduced Asellus abundance, leading to reduced leaf litter decomposition, while Cloeon emergence in summer declined due to a PhAC-induced decline in larval abundance. Warming alone consistently decreased arthropod abundances and emergence, except for Asellus abundance in winter. The stressor effects through changes in bioenergetics were stronger than their direct effects on population abundances and ecosystem functions. Our findings highlight the vulnerability of aquatic arthropods to PhAC pollution and warming, emphasising the need for effective management strategies to mitigate the effects of emerging contaminants and climate change on freshwater biota.
- Klíčová slova
- Asellus, Climate change, Cloeon, Ecological impacts, Energy budget, Freshwater invertebrates, Oxidative stress, Xenobiotics,
- MeSH
- chemické látky znečišťující vodu * toxicita MeSH
- členovci * účinky léků MeSH
- ekosystém * MeSH
- energetický metabolismus účinky léků MeSH
- klimatické změny MeSH
- roční období MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
BACKGROUND: While the 'no-tillage' management system generally improves soil properties and helps to control arthropod pests, it may also intensify crop infestation by the common vole (Microtus arvalis Pallas). In this study, we evaluated the impact of soil management (no-tillage or tillage), crop and previous crop (winter wheat or winter rape), and season (spring or autumn) on common vole density using data from the Common Vole Monitoring Programme undertaken by the Plant Protection Service of the Czech Republic between 2000 and 2009. RESULTS: Models predicted low mean values of vole infestation across management types, crops, and seasons. The untilled fields hosted significantly more voles than the tilled fields in spring but not in autumn. More common voles were found in winter rape than in winter wheat during both seasons. CONCLUSION: Recent studies suggest that no-tillage management is more profitable than tillage management as a result of its positive impact on soil properties and pest control. During periods of high vole infestation, however, tillage may constitute an alternative strategy for reducing yield losses. © 2017 Society of Chemical Industry.
- Klíčová slova
- burrow-system count method, common vole, density, no-tillage, soil management, tillage, winter rape, winter wheat,
- MeSH
- Arvicolinae fyziologie MeSH
- biologické modely MeSH
- Brassica napus růst a vývoj MeSH
- hustota populace MeSH
- pěstování plodin metody MeSH
- pšenice růst a vývoj MeSH
- roční období MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
- MeSH
- biodiverzita MeSH
- členovci * MeSH
- ekosystém * MeSH
- lidé MeSH
- půda MeSH
- tundra MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
The Arctic has warmed nearly four times faster than the global average since 1979, resulting in rapid glacier retreat and exposing new glacier forelands. These forelands offer unique experimental settings to explore how global warming impacts ecosystems, particularly for highly climate-sensitive arthropods. Understanding these impacts can help anticipate future biodiversity and ecosystem changes under ongoing warming scenarios. In this study, we integrate data on arthropod diversity from DNA gut content analysis-offering insight into predator diets-with quantitative measures of arthropod activity-density at a Greenland glacier foreland using Structural Equation Modelling (SEM). Our SEM analysis reveals both bottom-up and top-down controlled food chains. Bottom-up control, linked to sit-and-wait predator behavior, was prominent for spider and harvestman populations, while top-down control, associated with active search behavior, was key for ground beetle populations. Bottom-up controlled dynamics predominated during the early stages of vegetation succession, while top-down mechanisms dominated in later successional stages further from the glacier, driven largely by increasing temperatures. In advanced successional stages, top-down cascades intensify intraguild predation (IGP) among arthropod predators. This is especially evident in the linyphiid spider Collinsia holmgreni, whose diet included other linyphiid and lycosid spiders, reflecting high IGP. The IGP ratio in C. holmgreni negatively correlated with the activity-density of ground-dwelling prey, likely contributing to the local decline and possible extinction of this cold-adapted species in warmer, late-succession habitats where lycosid spiders dominate. These findings suggest that sustained warming and associated shifts in food web dynamics could lead to the loss of cold-adapted species, while brief warm events may temporarily impact populations without lasting extinction effects.
- Klíčová slova
- Aclastus borealis, Isotoma anglicana, Mitopus morio, NDVI, Nebria rufescens, antipredatory behavior, deglaciation, detritivores, extra‐guild prey, pioneer vegetation,
- Publikační typ
- časopisecké články MeSH
Insectivorous predators, including birds and bats, play crucial roles in trophic cascades. However, previous research on these cascades has often relied on permanent predator exclosures, which prevent the isolation of specific effects of birds and bats, given their different activity patterns throughout the day. Moreover, limited knowledge exists regarding the variations in individual effects of these predators under different biotic and abiotic conditions, such as changes in elevation. To address these uncertainties, our study aimed to investigate the distinct effects of bats and birds on arthropod densities in foliage and herbivory damage in lowland and highland rainforests of Papua New Guinea (PNG). Predator exclosures were established for one month to exclude diurnal or nocturnal predators across 120 saplings (ca. 2.5-4 m tall) selected from two lowland and two highland forests (i.e., 30 saplings per study site) along the Mt. Wilhelm transect in PNG. Arthropods were collected and measured, and herbivory damage was analyzed at the end of the experiment. Birds significantly reduced arthropod densities by 30%, particularly in arthropods longer than 10 mm, regardless of elevation. Additionally, both birds and bats appeared to mitigate herbivory damage in highland forests, with protected saplings displaying up to 189% more herbivory. Our results support previous studies that have demonstrated the ability of insectivorous predators to reduce leaf damage through the control of arthropods. Furthermore, our approach highlights the importance and necessity of further research on the role of seasons and elevations in trophic cascades.
- Klíčová slova
- arthropod density, elevation, predator exclosures, top‐down control, trophic cascades, tropical forest,
- MeSH
- býložravci * fyziologie MeSH
- Chiroptera * fyziologie MeSH
- členovci fyziologie MeSH
- lesy * MeSH
- potravní řetězec MeSH
- predátorské chování fyziologie MeSH
- ptáci * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Papua Nová Guinea MeSH
Arthropods are a documented cause of occupational allergy in cereal stores. Since the current allergenic risk of various arthropods in grain stores is not known, we evaluated its extent using data from the Czech Republic (CZ). We surveyed 514 grain storage units for pest composition and density. Recalculating literature data we established 4 density dependent classes of pooled mite "allergy-risk level" (ARL) in stored grain: (i) safe-ARL: 0 mites.g(-1) grain, (ii) low-ARL: up to 1 mite.g(-1) grain, (iii) high-ARL: from 1 to 5 mites.g(-1) grain, (iv) danger-acute asthma-ARL: higher than 5 mites.g(-1) grain. Farmers (15) were questioned for pest taxon-related pesticide treatments. Mites constituted the largest group of collected pests (92%) followed by psocids (5%), beetles (3%) and moths (0%). 60% of mites belonged to known allergen producing species; the most abundant were Acarus siro, A. faris, Tyrophagus putrescentiae and Lepidoglyphus destructor. Grain samples belonged to the established ARL classes as follows: (i) safe-ARL: 37% (ii) low-ARL: 53%; (iii) high-ARL: 6%; (iv) danger-acute asthma-ARL: 4%. The enquiry among farmers revealed that almost no pesticides were targeted solely to control mites. This study suggests that mites represent, due to their allergenic potential, density and frequency, the most serious source of allergens in stored grain in CZ. However, the medical aspect of pest control--such as allergy avoidance strategy--is overlooked since grain feeding insects were mostly chemically controlled, regardless of their relatively low density and allergen production in comparison with mites.
- MeSH
- alergeny MeSH
- členovci růst a vývoj imunologie MeSH
- hmyz růst a vývoj imunologie MeSH
- hodnocení rizik * MeSH
- hustota populace MeSH
- imunoglobulin E krev MeSH
- jedlá semena parazitologie MeSH
- kontaminace potravin analýza MeSH
- kontrola škůdců metody MeSH
- kožní testy MeSH
- lidé MeSH
- manipulace s potravinami MeSH
- nemoci z povolání epidemiologie etiologie imunologie MeSH
- nemoci zemědělců epidemiologie etiologie imunologie MeSH
- prevalence MeSH
- respirační alergie epidemiologie etiologie imunologie MeSH
- roztoči růst a vývoj imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- alergeny MeSH
- imunoglobulin E MeSH
Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance ('activity-density') because individual activity - which is affected by climatic factors - affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data.Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r, consistent with an exponential Q10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies.The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches.Synthesis and Applications. The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for temperature-related trapping bias is straightforward and enables population estimates to be more comparable. It may thus improve data interpretation in ecological, conservation and monitoring studies, and assist in better management and conservation of habitats and ecosystem services. Nevertheless, field ecologists should remain vigilant for other sources of bias.
- Klíčová slova
- Arrhenius equation, Carabidae, activity-density, differencing, meta-analysis, model estimation, monitoring, pitfall traps,
- Publikační typ
- časopisecké články MeSH