codon optimization
Dotaz
Zobrazit nápovědu
The visual cycle is an important pathway in the retinal pigment epithelium (RPE) which regenerates 11-cis retinal chromophore for the retinal photoreceptors. The central enzyme in the visual cycle is RPE65 retinol isomerase. Expression of RPE65 mRNA and protein levels are significantly lower in RPE cell culture models when compared to native RPE. This limits the use of these models to study the visual cycle. To determine the main drivers of RPE65 regulation we compared the transcriptional profiles of native and cell culture models of RPE with various levels of RPE65 expression. We also compared the levels of RPE65 expression between ARPE-19 cells grown in media supplemented with 1 mM pyruvate (PYR) or 10 mM nicotinamide (NAM). In addition, we performed experiments directed at transcriptional and translational regulation of RPE65. We show that RPE65 mRNA and protein expression is significantly higher in NAM media grown cells than PYR cells. Transfection of cells with a variety of different vectors containing RPE65 ORFs with different promoters, codon optimization, IRES, 3' UTRs, suggest that translational effects are less important than transcriptional status. Importantly, we found that feeding with rod outer segments (ROS) decreases RPE65 expression in NAM grown cells, suggesting that certain primary functions of the RPE (here, visual cycle and phagocytosis) are not positively linked. Analysis of differentially regulated microRNAs (miRs) provides a basis for this downregulation. It appears that the regulation of RPE65 expression in ARPE-19 cells, in particular, is multifactorial, involving primarily metabolic and transcriptional status of the cells, with translation of RPE65 mRNA playing a smaller role.
- Klíčová slova
- MicroRNAs, Nicotinamide, Pyruvate, RPE65, Retina, Retinal pigment epithelium, Ribosome, Transcription, Translation,
- MeSH
- buněčné linie MeSH
- cis-trans-isomerasy * genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- regulace genové exprese * MeSH
- retinální pigmentový epitel * metabolismus cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cis-trans-isomerasy * MeSH
- messenger RNA MeSH
- retinoid isomerohydrolase MeSH Prohlížeč
The malaria vector Anopheles stephensi has expanded from Asia into Eastern Africa, posing a growing global health threat due to its adaptive biology and increasing resistance to conventional control methods. Here, we characterise 4-hydroxyphenylpyruvate dioxygenase (HPPD), a crucial enzyme in the tyrosine degradation pathway, and demonstrate its potential as a novel drug target in An. stephensi. Homology modeling combined with molecular dynamics simulations confirmed that key inhibitor-binding residues are highly conserved across mosquito HPPDs and predicted potent inhibition by triketone-based compounds. Using cell-based assay with codon-optimized recombinant expression in Escherichia coli, we screened several triketone and diketonitrile HPPD inhibitors and identified nitisinone as the most potent inhibitor, displaying nanomolar-range IC50 values. Membrane feeding assays showed that nitisinone's insecticidal activity relies on ingestion of a high-protein meal, with haemoglobin identified as the potent dietary factor driving toxicity. These results highlight HPPD inhibition as a promising blood-meal-dependent vector control strategy specifically targeting haematophagous mosquitoes.
- Klíčová slova
- 4-Hydroxyphenylpyruvate dioxygenase (HPPD), Anopheles stephensi, Blood-feeding mosquitoes, Malaria vector control, Nitisinone, Tyrosine catabolism,
- Publikační typ
- časopisecké články MeSH
Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins. Most of the previous research has been limited to selecting from a few rationally designed sequences. In contrast, we used a directed evolution-based methodology, screening large numbers of diversified sequences derived from DNA libraries coding for the N-termini of investigated proteins. To facilitate the identification of cells with increased expression of the target construct, we cloned a GFP gene at the C-terminus of the expressed genes and used fluorescent activated cell sorting (FACS) to separate cells based on their fluorescence. By following this systematic workflow, we successfully elevated the yield of soluble recombinant proteins of multiple constructs up to over 30-fold.
- Klíčová slova
- DNA libraries, N‐terminal sequences, directed evolution, fluorescence‐activated cell sorting (FACS), protein expression optimization,
- MeSH
- Escherichia coli * genetika metabolismus MeSH
- genová knihovna * MeSH
- klonování DNA MeSH
- průtoková cytometrie * metody MeSH
- rekombinantní proteiny * genetika biosyntéza MeSH
- řízená evoluce molekul MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rekombinantní proteiny * MeSH
- zelené fluorescenční proteiny MeSH
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation (REI) at short upstream open reading frames (uORFs) harboring penultimate codons that confer heightened dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited REI at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on REI at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) REI. We found that the Tma proteins generally impede REI at native uORF4 and its variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on REI at native uORF1 and equipping it with Tma-hyperdependent penultimate codons generally did not confer Tma-dependent REI; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the REI potential of the uORF and penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
- MeSH
- iniciace translace peptidového řetězce MeSH
- malé podjednotky ribozomu eukaryotické * metabolismus genetika MeSH
- messenger RNA * metabolismus genetika MeSH
- otevřené čtecí rámce * MeSH
- proteosyntéza MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- transkripční faktory bZIP * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- messenger RNA * MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory bZIP * MeSH
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.
- MeSH
- fylogeneze * MeSH
- fyziologická adaptace genetika MeSH
- hemoragická horečka krymská virologie genetika MeSH
- Ixodidae virologie genetika MeSH
- klíšťata virologie genetika MeSH
- virus krymsko-konžské hemoragické horečky * genetika MeSH
- využití kodonu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S subunit from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation at short upstream open reading frames (uORFs) harboring penultimate codons that confer dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited reinitiation at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on reinitiation at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) reinitiation. We found that the Tma proteins generally impede reinitiation at native uORF4 and uORF4 variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on reinitiation at native uORF1, and equipping uORF1 with Tma-dependent penultimate codons generally did not confer Tma-dependent reinitiation; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the reinitiation potential of the uORF and the penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
- Klíčová slova
- DENR, MCTS1, Tma, eIF2D, reinitiation, ribosome recycling,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Dissociations of DNA trinucleotide codons as gas-phase singly and doubly protonated ions were studied by tandem mass spectrometry using 15N-labeling to resolve identity in the nucleobase loss and backbone cleavages. The monocations showed different distributions of nucleobase loss from the 5'-, middle, and 3'-positions depending on the nucleobase, favoring cytosine over guanine, adenine, and thymine in an ensemble-averaged 62:27:11:<1 ratio. The distribution for the loss of the 5'-, middle, and 3'-nucleobase was 49:18:33, favoring the 5'-nucleobase, but also depending on its nature. The formation of sequence w2+ ions was unambiguously established for all codon mono- and dications. Structures of low-Gibbs-energy protomers and conformers of dAAA+, dGGG+, dCCC+, dTTT+, dACA+, and dATC+ were established by Born-Oppenheimer molecular dynamics and density functional theory calculations. Monocations containing guanine favored classical structures protonated at guanine N7. Structures containing adenine and cytosine produced classical nucleobase-protonated isomers as well as zwitterions in which two protonated bases were combined with a phosphate anion. Protonation at thymine was disfavored. Low threshold energies for nucleobase loss allowed extensive proton migration to occur prior to dissociation. Loss of the nucleobase from monocations was assisted by neighboring group participation in nucleophilic addition or proton abstraction, as well as allosteric proton migrations remote from the reaction center. The optimized structures of diprotonated isomers for dAAA2+ and dACA2+ revealed combinations of classical and zwitterionic structures. The threshold and transition-state energies for nucleobase-ion loss from dications were low, resulting in facile dissociations involving cytosine, guanine, and adenine.
- MeSH
- adenin chemie MeSH
- cytosin chemie MeSH
- DNA chemie MeSH
- fosfáty MeSH
- guanin chemie MeSH
- kodon MeSH
- podjednotky proteinů MeSH
- protony * MeSH
- thymin * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenin MeSH
- cytosin MeSH
- DNA MeSH
- fosfáty MeSH
- guanin MeSH
- kodon MeSH
- podjednotky proteinů MeSH
- protony * MeSH
- thymin * MeSH
Our study examined the mutation efficiency of the CRISPR/Cas9 method for tryptophan aminotransferase BnaTAA1 genes involved in the auxin biosynthesis pathway. We made nine CRISPR/Cas9 constructs with various promoters driving the expression of a Cas9 from Staphylococcus aureus (SaCas9) or a plant-codon-optimized Streptococcus pyogenes Cas9 (pcoCas9). We developed a fast and efficient system for evaluating the variety and frequency of mutations caused by each construct using Brassica napus hairy roots. We showed that pcoCas9 is more efficient in mutating the targeted loci than SaCas9 and the presence of the NLS signal enhanced the chance of mutagenesis by 25%. The mutations were studied further in regenerated lines, and we determined the BnaTAA1 gene expression and heritability of the gene modifications in transgenic plants. Hairy root transformation combined with CRISPR/Cas9-mediated gene editing represents a fast and straightforward system for studying target gene function in the important oilseed crop B. napus.
- Klíčová slova
- Brassica napus, CRISPR/Cas9, TAA1, genome-editing, hairy root,
- Publikační typ
- časopisecké články MeSH
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
- MeSH
- Aspergillus MeSH
- invertasa * genetika MeSH
- kodon genetika MeSH
- Pichia * genetika MeSH
- rekombinantní proteiny genetika MeSH
- Saccharomycetales MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- invertasa * MeSH
- kodon MeSH
- rekombinantní proteiny MeSH
Due to the fast global spreading of the Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2), prevention and treatment options are direly needed in order to control infection-related morbidity, mortality, and economic losses. Although drug and inactivated and attenuated virus vaccine development can require significant amounts of time and resources, DNA and RNA vaccines offer a quick, simple, and cheap treatment alternative, even when produced on a large scale. The spike protein, which has been shown as the most antigenic SARS-CoV-2 protein, has been widely selected as the target of choice for DNA/RNA vaccines. Vaccination campaigns have reported high vaccination rates and protection, but numerous unintended effects, ranging from muscle pain to death, have led to concerns about the safety of RNA/DNA vaccines. In parallel to these studies, several open reading frames (ORFs) have been found to be overlapping SARS-CoV-2 accessory genes, two of which, ORF2b and ORF-Sh, overlap the spike protein sequence. Thus, the presence of these, and potentially other ORFs on SARS-CoV-2 DNA/RNA vaccines, could lead to the translation of undesired proteins during vaccination. Herein, we discuss the translation of overlapping genes in connection with DNA/RNA vaccines. Two mRNA vaccine spike protein sequences, which have been made publicly-available, were compared to the wild-type sequence in order to uncover possible differences in putative overlapping ORFs. Notably, the Moderna mRNA-1273 vaccine sequence is predicted to contain no frameshifted ORFs on the positive sense strand, which highlights the utility of codon optimization in DNA/RNA vaccine design to remove undesired overlapping ORFs. Since little information is available on ORF2b or ORF-Sh, we use structural bioinformatics techniques to investigate the structure-function relationship of these proteins. The presence of putative ORFs on DNA/RNA vaccine candidates implies that overlapping genes may contribute to the translation of smaller peptides, potentially leading to unintended clinical outcomes, and that the protein-coding potential of DNA/RNA vaccines should be rigorously examined prior to administration.
- Klíčová slova
- DNA vaccine, ORF-Sh, ORF2b, RNA vaccine, SARS-CoV-2, codon optimization, spike protein,
- MeSH
- DNA vakcíny škodlivé účinky genetika MeSH
- glykoprotein S, koronavirus genetika MeSH
- kodon MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- messenger RNA MeSH
- mRNA vakcíny škodlivé účinky genetika MeSH
- otevřené čtecí rámce MeSH
- překrývající se geny * MeSH
- proteinové domény MeSH
- proteosyntéza MeSH
- vakcíny proti COVID-19 škodlivé účinky genetika MeSH
- virové geny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vakcíny MeSH
- glykoprotein S, koronavirus MeSH
- kodon MeSH
- messenger RNA MeSH
- mRNA vakcíny MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcíny proti COVID-19 MeSH