Broad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate-energy and habitat heterogeneity, without considering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant-animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain country-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and animal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of variation in animal assemblages across the studied regions, an effect that outperforms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate-energy and abiotic habitat heterogeneity.
- Keywords
- Animal diversity, diversity patterns, energy hypothesis, habitat heterogeneity, plant community, productivity, vegetation,
- Publication type
- Journal Article MeSH
Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.
- MeSH
- Biodiversity * MeSH
- Tracheophyta * MeSH
- Ecosystem MeSH
- Plants MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Mitigating the effects of global change on biodiversity requires its understanding in the past. The main proxy of plant diversity, fossil pollen record, has a complex relationship to surrounding vegetation and unknown spatial scale. We explored both using modern pollen spectra in species-rich and species-poor regions in temperate Central Europe. We also considered the biasing effects of the trees by using sites in forests and open habitats in each region. Pollen samples were collected from moss polsters at 60 sites and plant species were recorded along two 1 km-transects at each site. We found a significant positive correlation between pollen and plant richness (alpha diversity) in both complete datasets and for both subsets from open habitats. Pollen richness in forest datasets is not significantly related to floristic data due to canopy interception of pollen rather than to pollen productivity. Variances (beta diversity) of the six pollen and floristic datasets are strongly correlated. The source area of pollen richness is determined by the number of species appearing with increasing distance, which aggregates information on diversity of individual patches within the landscape mosaic and on their compositional similarity. Our results validate pollen as a reconstruction tool for plant diversity in the past.
Although many studies have shown that species richness decreases from low to high latitudes (the Latitudinal Diversity Gradient), little is known about the relationship between latitude and phylogenetic diversity. Here we examine global latitudinal patterns of phylogenetic diversity using a dataset of 459 woody and 589 herbaceous plant communities. We analysed the relationships between community phylogenetic diversity, latitude, biogeographic realm and vegetation type. Using the most recent global megaphylogeny for seed plants and the standardised effect sizes of the phylogenetic diversity metrics 'mean pairwise distance' (SESmpd) and 'mean nearest taxon distance' (SESmntd), we found that species were more closely-related at low latitudes in woody communities. In herbaceous communities, species were more closely-related at high latitudes than at intermediate latitudes, and the strength of this effect depended on biogeographic realm and vegetation type. Possible causes of this difference are contrasting patterns of speciation and dispersal. Most woody lineages evolved in the tropics, with many gymnosperms but few angiosperms adapting to high latitudes. In contrast, the recent evolution of herbaceous lineages such as grasses in young habitat types may drive coexistence of closely-related species at high latitudes. Our results show that high species richness commonly observed at low latitudes is not associated with high phylogenetic diversity.
Coppice abandonment had negative consequences for biodiversity of forest vegetation and several groups of invertebrates. Most coppicing restoration studies have focused only on a single trophic level despite the fact that ecosystems are characterized by interactions between trophic levels represented by various groups of organisms. To address the patterns of functional diversity in the perspective of coppicing restoration, we studied the short-term effects of conservation-motivated tree canopy thinning in an abandoned coppice-with-standards in Central Europe, a region where such attempts have been rare so far. The functional diversity of vascular plants and spiders, chosen as two model trophic groups within a forest ecosystem, was compared between thinned and control forest patches. To characterize functional patterns, we examined several functional traits. These traits were assigned into two contrasting categories: response traits reflecting a change of environment (for both vascular plants and spiders) and effect traits influencing the ecosystem properties (only for vascular plants). Functional diversity was analysed by CCA using two measures: community-weighted means (CWM) and Rao's quadratic diversity (RaoQ). CCA models revealed that the canopy thinning had a positive effect on diversity of the response traits of both trophic groups and negatively influenced the diversity of effect traits. In addition, we found distinct seasonal dynamics in functional diversity of the spider communities, which was probably linked to leaf phenology of deciduous trees and therefore an effect trait not directly examined in this study. We conclude that canopy thinning affected functional diversity across trophic groups during the initial phase of coppicing restoration. With necessary precautions, careful canopy thinning can be effectively applied in the restoration of functional diversity in abandoned coppices.
- Keywords
- coppice restoration, effect traits, functional diversity, response traits, spiders, trophic groups, vascular plants,
- Publication type
- Journal Article MeSH
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.
- Keywords
- elevational gradient, macroecology, metabolic theory, microbial biogeography, microbial communities, species richness patterns,
- MeSH
- Bacteria metabolism MeSH
- Ecosystem MeSH
- Microbiota * MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Antarctic Regions MeSH
Vegetation complexity is an important predictor of animal species diversity. Specifically, taller vegetation should provide more potential ecological niches and thus harbor communities with higher species richness and functional diversity (FD). Resource use behavior is an especially important functional trait because it links species to their resource base with direct relevance to niche partitioning. However, it is unclear how exactly the diversity of resource use behavior changes with vegetation complexity. To address this question, we studied avian FD in relation to vegetation complexity along a continental-scale vegetation gradient. We quantified foraging behavior of passerine birds in terms of foraging method and substrate use at 21 sites (63 transects) spanning 3,000 km of woodlands and forests in Australia. We also quantified vegetation structure on 630 sampling points at the same sites. Additionally, we measured morphological traits for all 111 observed species in museum collections. We calculated individual-based, abundance-weighted FD in morphology and foraging behavior and related it to species richness and vegetation complexity (indexed by canopy height) using structural equation modeling, rarefaction analyses, and distance-based metrics. FD of morphology and foraging methods was best predicted by species richness. However, FD of substrate use was best predicted by canopy height (ranging 10-30 m), but only when substrates were categorized with fine resolution (17 categories), not when categorized coarsely (8 categories). These results suggest that, first, FD might increase with vegetation complexity independently of species richness, but whether it does so depends on the studied functional trait. Second, patterns found might be shaped by how finely we categorize functional traits. More complex vegetation provided larger "ecological space" with more resources, allowing the coexistence of more species with disproportionately more diverse foraging substrate use. We suggest that the latter pattern was driven by nonrandom accumulation of functionally distinct species with increasing canopy height.
- Keywords
- birds, foraging behavior, functional diversity, resource partitioning, species richness, vegetation complexity,
- Publication type
- Journal Article MeSH
A degree of host specificity, manifested by the processes of host-parasite cospeciations and host switches, is assumed to be a major determinant of parasites' evolution. To understand these patterns and formulate appropriate ecological hypotheses, we need better insight into the coevolutionary processes at the intraspecific level, including the maintenance of genetic diversity and population structure of parasites and their hosts. Here, we address these questions by analyzing large-scale molecular data on the louse Polyplax serrata and its hosts, mice of the genus Apodemus, across a broad range of European localities. Using mitochondrial DNA sequences and microsatellite data, we demonstrate the general genetic correspondence of the Apodemus/Polyplax system to the scenario of the postglacial recolonization of Europe, but we also show several striking discrepancies. Among the most interesting are the evolution of different degrees of host specificity in closely related louse lineages in sympatry, or decoupled population structures of the host and parasites in central Europe. We also find strong support for the prediction that parasites with narrower host specificity possess a lower level of genetic diversity and a deeper pattern of interpopulation structure as a result of limited dispersal and smaller effective population size.
- Keywords
- Apodemus, Polyplax, coevolution, dispersal, genetic diversity, host specificity,
- Publication type
- Journal Article MeSH
Macroecologists seek to identify drivers of community turnover (β-diversity) through broad spatial scales. However, the influence of local habitat features in driving broad-scale β-diversity patterns remains largely untested, owing to the objective challenges of associating local-scale variables to continental-framed datasets. We examined the relative contribution of local- versus broad-scale drivers of continental β-diversity patterns, using a uniquely suited dataset of cave-dwelling spider communities across Europe (35-70° latitude). Generalized dissimilarity modelling showed that geographical distance, mean annual temperature and size of the karst area in which caves occurred drove most of β-diversity, with differential contributions of each factor according to the level of subterranean specialization. Highly specialized communities were mostly influenced by geographical distance, while less specialized communities were mostly driven by mean annual temperature. Conversely, local-scale habitat features turned out to be meaningless predictors of community change, which emphasizes the idea of caves as the human accessible fraction of the extended network of fissures that more properly represents the elective habitat of the subterranean fauna. To the extent that the effect of local features turned to be inconspicuous, caves emerge as experimental model systems in which to study broad biological patterns without the confounding effect of local habitat features.
- Keywords
- Araneae, Europe, cave, generalized dissimilarity model, latitudinal gradient, subterranean biodiversity,
- MeSH
- Biodiversity MeSH
- Species Specificity MeSH
- Ecosystem MeSH
- Spiders physiology MeSH
- Temperature MeSH
- Geography MeSH
- Environment * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
Temporary pools are seasonal wetland habitats with specifically adapted biota, including annual Nothobranchius killifishes that survive habitat desiccation as diapausing eggs encased in dry sediment. To understand the patterns in the structure of Nothobranchius assemblages and their potential in wetland conservation, we compared biodiversity components (alpha, beta, and gamma) between regions and estimated the role and sources of nestedness and turnover on their diversity. We sampled Nothobranchius assemblages from 127 pools across seven local regions in lowland Eastern Tanzania over 2 years, using dip net and seine nets. We estimated species composition and richness for each pool, and beta and gamma diversity for each region. We decomposed beta diversity into nestedness and turnover components. We tested nestedness in three main regions (Ruvu, Rufiji, and Mbezi) using the number of decreasing fills metric and compared the roles of pool area, isolation, and altitude on nestedness. A total of 15 species formed assemblages containing 1-6 species. Most Nothobranchius species were endemic to one or two adjacent regions. Regional diversity was highest in the Ruvu, Rufiji, and Mbezi regions. Nestedness was significant in Ruvu and Rufiji, with shared core (N. melanospilus, N. eggersi, and N. janpapi) and common (N. ocellatus and N. annectens) species, and distinctive rare species. Nestedness apparently resulted from selective colonization rather than selective extinction, and local species richness was negatively associated with altitude. The Nothobranchius assemblages in the Mbezi region were not nested, and had many endemic species and the highest beta diversity driven by species turnover. Overall, we found unexpected local variation in the sources of beta diversity (nestedness and turnover) within the study area. The Mbezi region contained the highest diversity and many endemic species, apparently due to repeated colonizations of the region rather than local diversification. We suggest that annual killifish can serve as a flagship taxon for small wetland conservation.
- Keywords
- Africa, Cyprinodontiformes, dispersal, ephemeral habitats, habitat protection,
- Publication type
- Journal Article MeSH