microdissection
Dotaz
Zobrazit nápovědu
The advancement in molecular techniques has been attributed to the quality and significance of cancer research. Pancreatic cancer (PC) is one of the rare cancers with aggressive behavior and a high mortality rate. The asymptomatic nature of the disease until its advanced stage has resulted in late diagnosis as well as poor prognosis. The heterogeneous character of PC has complicated cancer development and progression studies. The analysis of bulk tissues of the disease was insufficient to understand the disease, hence, the introduction of the single-cell separating technique aided researchers to decipher more about the specific cell population of tumors. This review gives an overview of the Laser Capture Microdissection (LCM) technique, one of the single-cell separation methods used in PC research.
- Klíčová slova
- Laser Capture Microdissection (LCM), hypoxia, intraductal papillary mucinous neoplasm (IPMN), metastasis, pancreatic cancer, single-cell separation,
- MeSH
- duktální karcinom slinivky břišní * patologie MeSH
- laserová záchytná mikrodisekce MeSH
- lidé MeSH
- nádory slinivky břišní * patologie MeSH
- pankreas patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Laser microdissection (LM) is a powerful tool for various molecular analyses providing pure samples for genomic, transcriptomic, and proteomic studies. Cell subgroups, individual cells, or even chromosomes can be separated via laser beam from complex tissues, visualized under the microscope, and used for subsequent molecular analyses. This technique provides information on nucleic acids and proteins, keeping their spatiotemporal information intact. In short, the slide with tissue is placed under the microscope, imaged by a camera onto a computer screen, where the operator selects cells/chromosomes based on morphology or staining and commands the laser beam to cut the specimen following the selected path. Samples are then collected in a tube and subjected to downstream molecular analysis, such as RT-PCR, next-generation sequencing, or immunoassay.
- Klíčová slova
- Cells, Chromosomes, Cytology, Histology, Microdissection,
- MeSH
- analýza jednotlivých buněk MeSH
- chromozomy MeSH
- genom * MeSH
- laserová záchytná mikrodisekce metody MeSH
- proteomika * MeSH
- Publikační typ
- časopisecké články MeSH
A recent progress in plant molecular biology has led to enormous available data of DNA sequences, including complete nuclear genomes of Arabidopsis, rice, and poplar. On the other hand, in plant species with more complex genomes, containing widespread repetitive sequences, it is important to establish genomic resources that help us to focus on particular part of genomes. Laser technology enables to handle with specific subcellular structures or even individual chromosomes. Here we present a comprehensive protocol to isolate and characterize DNA sequences derived from the sex chromosomes of white campion (Silene latifolia). This dioecious plant has become the most favorite model to study the structure, function, and evolution of plant sex chromosomes due to a large and distinguishable size of both the X and Y chromosomes. The protocol includes a versatile technique to prepare metaphase chromosomes from either germinating seeds or in vitro cultured hairy roots. Such slides can be used for laser chromosome microdissection, fluorescence in situ-hybridization mapping, and immunostaining. Here we also demonstrate some applications of the laser-dissected chromosome template, especially a modified FAST-FISH technique to paint individual chromosomes, and construction and screening of chromosome-specific DNA libraries.
One difficulty in studying molecular changes of tumours has been the inability to isolate DNA and RNA from a homogeneous cell population. The combination of several new technologies should help overcome these hurdles. Microdissection is a technique for rapid and easy procurement of a pure cellular subpopulation away from its complex tissue milieu. Laser-assisted microdissection has recently been identified as a quick, simple and effective method by which microdissection of complex tissue specimens can be routinely performed for molecular analysis. With the advent of laser microdissection, cDNA libraries can be developed from pure cells obtained directly from stained neoplastic tissue, and microarrays of thousands of genes can now be used to examine gene expression in microdissected tumour tissue samples. This review will concentrate on the application of different microdissection techniques in the area of cancer research.
- MeSH
- cytogenetika přístrojové vybavení metody MeSH
- disekce přístrojové vybavení metody MeSH
- DNA nádorová analýza MeSH
- komplementární DNA genetika MeSH
- lidé MeSH
- mikromanipulace přístrojové vybavení metody MeSH
- nádorové kmenové buňky chemie MeSH
- nádorové proteiny analýza MeSH
- nádory genetika patologie MeSH
- progrese nemoci MeSH
- RNA nádorová analýza MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- separace buněk metody MeSH
- stanovení celkové genové exprese * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA nádorová MeSH
- komplementární DNA MeSH
- nádorové proteiny MeSH
- RNA nádorová MeSH
Mammalian sperm cells are not capable of fertilizing an egg immediately after ejaculation; instead, they must gradually acquire the capacity to fertilize while they travel inside the female reproductive tract. Sperm cells are transported by the muscular activity of the myometrium to the utero-tubal junction (UTJ) before entering the oviduct where they undergo this physiological process, termed capacitation. Since the successful emulation of mammalian sperm capacitation in vitro, which led to the development of in vitro fertilization techniques, sperm capacitation and gamete interaction studies have been mostly carried out under in vitro conditions. Sperm cells are typically incubated in vitro for up to several hours at a concentration of more than 1 million cells per milliliter in the capacitation media inside a 37°C incubator with 5% CO2, mimicking the tubal fluid composed of serum albumin, bicarbonate, and Ca2+. The resultant sperm are functionally and molecularly heterogeneous with respect to acrosome reaction, motility, and phosphorylation. By contrast, in vivo sperm capacitation occurs in a time- and space-dependent manner, with limits on the number of capacitating sperm in the oviduct. The small number of sperm at the fertilization site in vivo are highly homogeneous and uniformly capable of fertilization. This discrepancy makes the degree of correlation between the changes observed from in vitro capacitation as a population average and the fertilizing capacity of sperm less clear. To overcome this issue, we used CLARITY tissue clearing to visualize sperm directly inside the female tract in situ and isolated sperm capacitated in vivo from the oviducts of the female mice after timed mating ( Ded et al., 2020 ). Here, we present a step-by-step protocol to collect in vivo capacitated sperm by detailing a microdissection technique and subsequent preparation steps for fluorescent imaging. The advantage of the microdissection technique over in vitro capacitation is the ability to collect physiologically segregated, homogeneous sperm populations at different stages of capacitation. Compared to CLARITY, this technique is more straightforward and compatible with a broader spectrum of antibodies for downstream imaging studies, as it allows the researcher to avoid a potentially high background from non-sperm cells in the tissue. The disadvantage of this technique is the potential contamination of the isolated sperm from different regions of the oviduct and disruption of the fine molecular structures (e.g., CatSper nanodomains) during sperm isolation, especially when the preparation is not performed swiftly. Hence, we suggest that the combination of both in situ and ex vivo isolated sperm imaging is the best way how to address the molecular features of in vivo capacitated sperm.
- Klíčová slova
- Mice, Microdissection, Microscopy, Oviduct, Sperm, Timed mating,
- Publikační typ
- časopisecké články MeSH
Laser capture microdissection is a relatively young method used both in biomedical sciences as in other studies of animal and vegetable tissues and cells. Current human medicine and its methods of investigation are based on both current established processes, and simultaneously there are new experimental approaches from molecular biology tested. In this context it is highly desirable that the studied tissue is homogenous and representative population of cells. For this purposes at the late 80s the method of laser capture microdissection (LCM) has been developed, the first publication dealing with this method was released even in 1996. In current databases of literature we are able to find hundreds of papers focused on LCM such a method or as a part of methodic approach of experiments whose results led to the improved knowledge of genetic and proteomic nature of various diseases. This knowledge is of great promise for successful targeted therapy in the future.
The platform for precise proteomic profiling of targeted cell populations from heterogeneous tissue sections is developed. We demonstrate a seamless and systematic integration of LCM with an automated cap-IA for the handling of a very small-sized dissected tissues section from the kidney, liver and pancreatic Langerhans islet of rats. Our analysis reveals that the lowest LCM section area ≥ 0.125 mm2 with 10 µm thickness can be optimized for the detection of proteins through LCM-cap-IA integration. We detect signals ranging from a highly-abundant protein, β-actin, to a low-abundance protein, LC-3AB, using 0.125 mm2 LCM section from rat kidney, but, so far, a relatively large section is required for good quality of results. This integration is applicable for a highly-sensitive and accurate assessment of microdissected tissue sections to decipher hidden proteomic information of pure targeted cells. To validate this integration, PCK2 protein expression is studied within Langerhans islets of normal and diabetic rats. Our results show significant overexpression of PCK2 in Langerhans islets of rats with long-term diabetes.
- Klíčová slova
- Langerhans islets, PCK2, capillary Western blotting, laser capture microdissection, multiplexing,
- Publikační typ
- časopisecké články MeSH
On a retrospective cohort of 1,082 FFPE breast tumors, we demonstrated the analytical validity of a test using multiplexed RNA-FISH-guided laser capture microdissection (LCM) coupled with RNA-sequencing (mFISHseq), which showed 93% accuracy compared to immunohistochemistry. The combination of these technologies makes strides in i) precisely assessing tumor heterogeneity, ii) obtaining pure tumor samples using LCM to ensure accurate biomarker expression and multigene testing, and iii) providing thorough and granular data from whole transcriptome profiling. We also constructed a 293-gene intrinsic subtype classifier that performed equivalent to the research based PAM50 and AIMS classifiers. By combining three molecular classifiers for consensus subtyping, mFISHseq alleviated single sample discordance, provided near perfect concordance with other classifiers (κ > 0.85), and reclassified 30% of samples into different subtypes with prognostic implications. We also use a consensus approach to combine information from 4 multigene prognostic classifiers and clinical risk to characterize high, low, and ultra-low risk patients that relapse early (< 5 years), late (> 10 years), and rarely, respectively. Lastly, to identify potential patient subpopulations that may be responsive to treatments like antibody drug-conjugates (ADC), we curated a list of 92 genes and 110 gene signatures to interrogate their association with molecular subtype and overall survival. Many genes and gene signatures related to ADC processing (e.g., antigen/payload targets, endocytosis, and lysosome activity) were independent predictors of overall survival in multivariate Cox regression models, thus highlighting potential ADC treatment-responsive subgroups. To test this hypothesis, we constructed a unique 19-feature classifier using multivariate logistic regression with elastic net that predicted response to trastuzumab emtansine (T-DM1; AUC = 0.96) better than either ERBB2 mRNA or Her2 IHC alone in the T-DM1 arm of the I-SPY2 trial. This test was deployed in a research-use only format on 26 patients and revealed clinical insights into patient selection for novel therapies like ADCs and immunotherapies and de-escalation of adjuvant chemotherapy.
- Klíčová slova
- RNA-FISH, RNA-sequencing, antibody drug-conjugates, breast cancer, laser capture microdissection, spatial biology,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
- MeSH
- kapři parazitologie MeSH
- kathepsiny analýza metabolismus MeSH
- laserová záchytná mikrodisekce MeSH
- parenchymatická tkáň metabolismus MeSH
- ploštěnci metabolismus MeSH
- proteasy analýza metabolismus MeSH
- proteom analýza MeSH
- proteomika metody MeSH
- střevní sliznice metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kathepsiny MeSH
- proteasy MeSH
- proteom MeSH
Laser microdissection was used for the preparation of whole chromosome painting probes in Silurana (Xenopus) tropicalis. Subsequent cross-species fluorescence in situ hybridization (Zoo-FISH) on its tetraploid relative Xenopus laevis revealed persistence of chromosomal quartets even after 50-65 million years of separate evolution. Their arrangement is in a partial concordance with previous experiments based on similarity of a high-resolution replication banding pattern. Further support for an allotetraploid origin of X. laevis was given by hybridization with a probe derived from the smallest X. tropicalis chromosome (Xt10). Here, pericentric areas of both arms of Xl 14 and 18 were stained, indicating intrachromosomal rearrangements. The positions of signals were not in agreement with the chromosomal quartets revealed by painting probes Xt 8 and 9 (Xl 11 + 14 and Xl 15 + 18, respectively). This suggests that both X. tropicalis chromosomes underwent non-reciprocal translocation of Xt10 separately in at least two different ancient ancestors. In addition, the observed translocation events could explain the origin of individuals with 18 chromosomes in diploid karyotypes, probably extinct after the genesis of the allotetraploid X. laevis (2n = 36).
- MeSH
- biologická evoluce * MeSH
- chromozomy genetika MeSH
- cytogenetické vyšetření metody MeSH
- DNA sondy * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace MeSH
- mikrodisekce * MeSH
- pruhování chromozomů MeSH
- translokace genetická MeSH
- Xenopus laevis genetika MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy * MeSH