structural complexity
Dotaz
Zobrazit nápovědu
Uranyl sulfates, including those occurring in Nature (∼40 known members), possess particularly interesting structures. They exhibit a great dimensional and topological diversity of structures: from those based upon clusters of polyhedra to layered structures. There is also a great variability in the type of linkages between U and S polyhedra. From the point of view of complexity of those structures (measured as the amount of Shannon information per unit cell), most of the natural uranyl sulfates are intermediate (300-500 bits per cell) to complex (500-1000 bits per cell) with some exceptions, which can be considered as very complex structures (>1000 bits per cell). These exceptions are minerals alwilkinsite-(Y) (1685.95 bits per cell), sejkoraite-(Y) (1859.72 bits per cell), and natrozippeite (2528.63 bits per cell). The complexity of these structures is due to an extensive hydrogen bonding network which is crucial for the stability of these mineral structures. The hydrogen bonds help to propagate the charge from the highly charged interlayer cations (such as Y3+) or to link a high number of interlayer sites (i.e. five independent Na sites in the monoclinic natrozippeite) occupied by monovalent cations (Na+). The concept of informational ladder diagrams was applied to the structures of uranyl sulfates in order to quantify the particular contributions to the overall informational complexity and identifying the most contributing sources (topology, real symmetry, interlayer bonding).
- Klíčová slova
- Shannon information, crystal structure, ladder diagrams, structural complexity, topological complexity, uranyl sulfates,
- Publikační typ
- časopisecké články MeSH
An extension is proposed of the Shannon entropy-based structural complexity measure introduced by Krivovichev, taking into account the geometric coordinational degrees of freedom a crystal structure has. This allows a discrimination to be made between crystal structures which share the same number of atoms in their reduced cells, yet differ in the number of their free parameters with respect to their fractional atomic coordinates. The strong additivity property of the Shannon entropy is used to shed light on the complexity measure of Krivovichev and how it gains complexity contributions due to single Wyckoff positions. Using the same property allows for combining the proposed coordinational complexity measure with Krivovichev's combinatorial one to give a unique quantitative descriptor of a crystal structure's configurational complexity. An additional contribution of chemical degrees of freedom is discussed, yielding an even more refined scheme of complexity measures which can be obtained from a crystal structure's description: the six C's of complexity.
- Klíčová slova
- Krivovichev complexity, Shannon entropy, crystal structure classification, strong additivity, structural complexity,
- Publikační typ
- časopisecké články MeSH
Wyckoff sequences are a way of encoding combinatorial information about crystal structures of a given symmetry. In particular, they offer an easy access to the calculation of a crystal structure's combinatorial, coordinational and configurational complexity, taking into account the individual multiplicities (combinatorial degrees of freedom) and arities (coordinational degrees of freedom) associated with each Wyckoff position. However, distinct Wyckoff sequences can yield the same total numbers of combinatorial and coordinational degrees of freedom. In this case, they share the same value for their Shannon entropy based subdivision complexity. The enumeration of Wyckoff sequences with this property is a combinatorial problem solved in this work, first in the general case of fixed subdivision complexity but non-specified Wyckoff sequence length, and second for the restricted case of Wyckoff sequences of both fixed subdivision complexity and fixed Wyckoff sequence length. The combinatorial results are accompanied by calculations of the combinatorial, coordinational, configurational and subdivision complexities, performed on Wyckoff sequences representing actual crystal structures.
- Klíčová slova
- Shannon entropy, Wyckoff sequences, combinatorics, structural complexity,
- Publikační typ
- časopisecké články MeSH
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
- Klíčová slova
- Derivatization, Fragmentation, Glycosphingolipids, Liquid chromatography, Mass spectrometry, Structural elucidation,
- MeSH
- glykosfingolipidy * chemie analýza MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- glykosfingolipidy * MeSH
Structural complexity is known to influence prey behaviour, mortality and population structure, but the effects on predators have received less attention. We tested whether contrasting structural complexity in two newly colonised lakes (low structural complexity lake-LSC; high structural complexity-HSC) was associated with contrasting behaviour in an aquatic apex predator, Northern pike (Esox lucius; hereafter pike) present in the lakes. Behaviour of pike was studied with whole-lake acoustic telemetry tracking, supplemented by stable isotope analysis of pike prey utilization and survey fishing data on the prey fish community. Pike displayed increased activity, space use, individual growth as well as behavioural differentiation and spent more time in open waters in the LSC lake. Despite observed differences between lakes, stable isotopes analyses indicated a high dependency on littoral food sources in both lakes. We concluded that pike in the HSC lake displayed a behaviour consistent with a prevalent ambush predation behaviour, whereas the higher activity and larger space use in the LSC lake indicated a transition to more active search behaviour. It could lead to increased prey encounter and cause better growth in the LSC lake. Our study demonstrated how differences in structural complexity mediated prominent changes in the foraging behaviour of an apex predator, which in turn may have effects on the prey community.
- MeSH
- ekosystém * MeSH
- Esocidae fyziologie MeSH
- jezera chemie MeSH
- potravní řetězec * MeSH
- predátorské chování fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: The duckweeds (Lemnaceae) consist of 36 species exhibiting impressive phenotypic variation, including the progressive evolutionary loss of a fundamental plant organ, the root. Loss of roots and reduction of vascular tissues in recently derived taxa occur in concert with genome expansions of ≤14-fold. Given the paired loss of roots and reduction in structural complexity in derived taxa, we focus on the evolution of the ionome (whole-plant elemental contents) in the context of these fundamental changes in body plan. We expect that progressive vestigiality and eventual loss of roots might have both adaptive and maladaptive consequences that are hitherto unknown. METHODS: We quantified the ionomes of 34 accessions in 21 species across all duckweed genera, spanning 70 Myr in this rapidly cycling plant (doubling times are as rapid as ~24 h). We related both micro- and macroevolutionary ionome contrasts to body plan remodelling and showed nimble microevolutionary shifts in elemental accumulation and exclusion in novel accessions. KEY RESULTS: We observed a robust directional trend in calcium and magnesium levels, decreasing from the ancestral representative Spirodela genus towards the derived rootless Wolffia, with the latter also accumulating cadmium. We also identified abundant within-species variation and hyperaccumulators of specific elements, with this extensive variation at the fine (as opposed to broad) scale. CONCLUSIONS: These data underscore the impact of root loss and reveal the very fine scale of microevolutionary variation in hyperaccumulation and exclusion of a wide range of elements. Broadly, they might point to trade-offs not well recognized in ionomes.
- Klíčová slova
- Landoltia, Lemna, Spirodela, Wolffia, Wolffiella, ICP-MS, Vestigiality, duckweed, evolution, ionomics,
- MeSH
- Araceae * genetika anatomie a histologie metabolismus MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- hořčík metabolismus analýza MeSH
- kořeny rostlin metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hořčík MeSH
- vápník MeSH
A new method for classifying bacteria is presented and applied to a large set of biochemical data for the Enterobacteriaceae. The method minimizes the bits needed to encode the classes and the items or, equivalently, maximizes the information content of the classification. The resulting taxonomy of Enterobacteriaceae corresponds well to the general structure of earlier classifications. Minimization of stochastic complexity can be considered as a useful tool to create bacterial classifications that are optimal from the point of view of information theory.
- Klíčová slova
- Enterobacteriaceae, classification, information theory, stochastic complexity, taxonomy,
- Publikační typ
- časopisecké články MeSH
Fucoidan from the sporophyll (Mekabu) of brown seaweed Undaria pinnatifida (wakame) is interesting due to its various biological activities. Mekabu fucoidan (Mw ∼ 9 kDa) of this study (MF) was previously isolated and characterized by chemical and separation methods including GPC and methylation analysis (Lee, Hayashi, Hashimoto, Nakano, & Hayashi, 2004). It was found that this fucoidan composed of partially sulphated (DS ∼ 0.72) fucose and galactose at approximately equal amounts. Methylation analyses revealed complex structure of MF. However, it has been still unclear about the linkages between units and substitution patterns. To solve these structural tasks, spectroscopic methods (FTIR, FT Raman and NMR) were used in the analysis of native MF and its deesterified derivatives. According to obtained results, this polysaccharide was defined as O-acetylated sulphated fucogalactan. The defensive effects of MF were evaluated on mice infected with avian influenza A viruses (H5N3 and H7N2 subtypes); its efficacy was determined in reducing viral replication and increasing antibody production. Oral administration of MF resulted in suppressing virus yields. In addition, the production of neutralizing antibodies and mucosal IgA in the animals inoculated with the avian influenza A viruses was significantly increased. These results suggested that MF could be used for the prevention of viral infection.
- Klíčová slova
- Avian influenza A virus, Immunostimulating effect, Mekabu fucoidan, Spectroscopic methods, Sporophyll Undaria pinnatifida,
- MeSH
- adjuvancia imunologická chemie izolace a purifikace terapeutické užití MeSH
- antivirové látky chemie izolace a purifikace terapeutické užití MeSH
- kachny virologie MeSH
- mořské řasy chemie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- polysacharidy chemie izolace a purifikace terapeutické užití MeSH
- ptačí chřipka u ptáků farmakoterapie imunologie MeSH
- replikace viru účinky léků MeSH
- tvorba protilátek účinky léků MeSH
- Undaria chemie MeSH
- virus chřipky A, podtyp H7N2 účinky léků MeSH
- virus chřipky A účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- antivirové látky MeSH
- fucoidan MeSH Prohlížeč
- polysacharidy MeSH
Eukaryotic cells possess considerable internal complexity, differentiating them from prokaryotes. Eukaryogenesis, an evolutionary transitional period culminating in the last eukaryotic common ancestor (LECA), marked the origin of the eukaryotic endomembrane system. LECA is reconstructed as possessing intracellular complexity akin to modern eukaryotes. Construction of endomembrane compartments involved three key gene families: coatomer, BAR-domain proteins, and ESCRT. Each has a distinct evolutionary origin, but of these coatomer and BAR proteins are eukaryote specific, while ESCRT has more ancient origins. We discuss the structural motifs defining these three membrane-coating complexes and suggest that compared with BAR and ESCRT, the coatomer architecture had a unique ability to be readily and considerably modified, unlocking functional diversity and enabling the development of the eukaryotic cell.
- MeSH
- biologická evoluce MeSH
- COP-vezikuly MeSH
- endozomální třídící komplexy pro transport metabolismus MeSH
- Eukaryota * genetika MeSH
- eukaryotické buňky * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- endozomální třídící komplexy pro transport MeSH
- MeSH
- časové faktory MeSH
- chování zvířat MeSH
- krysa rodu Rattus MeSH
- pátrací chování * MeSH
- řešení problému MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH