work with computer Dotaz Zobrazit nápovědu
Computer vision syndrome is a term for a set of symptoms that often manifest themselves during a long-term work on a digital device. According to several studies, these symptoms are more common in people with uncorrected latent strabismus. The most frequent complications include eye fatigue, blurred and double vision, headaches, and neck and back pain. The aim of this study is to point out the most common manifestations of computer vision syndrome and how to minimize or eliminate the occurrence of these manifestations. The aim of the research was also to verify whether people with horizontal heterophoria manifest symptoms of computer vision syndrome more than people without heterophoria. At first came the diagnosis of latent strabismus. Then we created a research and a control group and finally we set a questionnaire evaluating computer vision syndrome. The research included 56 participants, wherein 30 % (17) were men and 70 % (39) were women. After dividing the research sample into two groups - one with heterophoria and one with orthophoria - it was discovered that 54 % (30) of the participants had heterophoria measured at a distance of 70 cm while 46 % (26) of the participants were included in the control, orthophoric group. After the questionnaire evaluation, it was found out that for participants with heterophoria, the final score in the questionnaire was 9.4 ± 6.6 points. Participants who were heterophoric had a better average score of the questionnaire, 7.1 ± 5.5 points. In addition, participants with heterophoria were more likely to report increased visual discomfort at close range, associated with eye pain and problems with simple binocular vision compared to participants without heterophoria. It was confirmed that latent strabismus has a negative effect on the endurance of participants when working with a computer. Moreover, people with heterophoria show greater subjective difficulties when working with digital devices compared to the control group. To improve the quality of work with digital devices, it is necessary to work on alleviating the manifestations of computer vision syndrome, which can be achieved by following the rules of visual hygiene, workplace ergonomics, the use of quality work equipment and expanding regular eye examinations for a screening of the latent strabismus.
- Klíčová slova
- computer vision syndrome, heterophoria, visual hygiene, workspace ergonomics,
- MeSH
- lidé MeSH
- počítače MeSH
- poruchy zraku diagnóza etiologie prevence a kontrola MeSH
- strabismus * etiologie MeSH
- syndrom MeSH
- vidění binokulární * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable: It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.
- Klíčová slova
- Artificial intelligence, Computer vision, Deep neural networks, Machine learning, Pituitary adenoma, Radiomics,
- MeSH
- adenom * diagnostické zobrazování MeSH
- deep learning MeSH
- lidé MeSH
- nádory hypofýzy * diagnostické zobrazování MeSH
- počítačové zpracování obrazu metody MeSH
- radiomika MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Today, ensuring work safety is considered to be one of the top priorities for various industries. Workplace injuries, illnesses, and deaths often entail substantial production and financial losses, governmental checks, series of dismissals, and loss of reputation. Wearable devices are one of the technologies that flourished with the fourth industrial revolution or Industry 4.0, allowing employers to monitor and maintain safety at workplaces. The purpose of this article is to systematize knowledge in the field of industrial wearables' safety to assess the relevance of their use in enterprises as the technology maintaining occupational safety, to correlate the benefits and costs of their implementation, and, by identifying research gaps, to outline promising directions for future work in this area. We categorize industrial wearable functions into four classes (monitoring, supporting, training, and tracking) and provide a classification of the metrics collected by wearables to better understand the potential role of wearable technology in preserving workplace safety. Furthermore, we discuss key communication technologies and localization techniques utilized in wearable-based work safety solutions. Finally, we analyze the main challenges that need to be addressed to further enable and support the use of wearable devices for industrial work safety.
- Klíčová slova
- IIoT, communications, data collection, localization, occupational safety, smart devices, wearables,
- MeSH
- hygiena práce * MeSH
- monitorování fyziologických funkcí MeSH
- nositelná elektronika * MeSH
- pracoviště MeSH
- průzkumy a dotazníky MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite its undeniable advantages, the operation of a CT scanner also carries risks to human health. The CT scanner is a source of ionizing radiation, which also affects people in its surroundings. The aim of this paper is to quantify the radiation exposure of workers at a 3D CT wood scanning workplace and to determine a monitoring program based on measurements of ionizing radiation levels during the operation of a CT log scanner. The workplace is located in the Biotechnology Park of the National Forestry Centre. The ionizing radiation source is located in a protective cabin as a MICROTEC 3D CT machine with an X-ray lamp as X-ray source. The CT scanner is part of the 3D CT scanning line and its function is continuous quality scanning or detection of internal defects of the examined wood. The measurement of leakage radiation during scanning is performed with a metrologically verified meter. The measured quantity is the ambient dose equivalent rate H˙*10. The results of the measurements at the selected measurement sites have shown that, after installation of additional safety barriers, the CT scanner for the logs complies with the most strict criteria in terms of radiation protection. Workers present at the workplace during the operation of the CT scanner are not exposed to radiation higher than the background radiation level.
- Klíčová slova
- CT scanner, leakage radiation, measurement, radiation protection, risk, safety,
- MeSH
- dávka záření MeSH
- lidé MeSH
- počítače MeSH
- počítačová rentgenová tomografie * metody MeSH
- pracoviště MeSH
- radiační ochrana * MeSH
- rentgenové záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This article briefly describes our program Jamsek written in FORTRAN for an ICL 2950/10 computer. Jamsek combines statistical and stereochemical rules most frequently encountered in literature to predict protein secondary structure from its sequence, into a single algorithm. The composite algorithm does not work better than the best existing single algorithms of Garnier et al. (J. Mol. Biol., 120, 97-120, 1978) or Lim (J. Mol. Biol., 88, 873-894, 1974) if percentage of residues with a correctly predicted secondary structure is taken as a criterion. However, it is fairly reliable in predicting the total amount of alpha-helices and beta-sheets in proteins, the secondary structure of highly ordered proteins or their parts and identification of long alpha-helices. It surpasses the previous algorithms by providing a possibility to make a notion about confidence of the prediction of the particular secondary structure elements thanks to the simultaneous availability of four independent predictions of the secondary structure and other relevant data (hydrophobic profile and helical wheel representation). The main body of this article is devoted to a demonstration that output data of Jamsek can simply be used for the prediction of protein topological class, identification of globular proteins containing hydrophobic alpha-helices and, as an auxiliary means, to distinguish between protein coding and non-coding nucleotide sequences.
- MeSH
- algoritmy MeSH
- chemické jevy MeSH
- chemie MeSH
- konformace proteinů * MeSH
- matematické výpočty počítačové * MeSH
- proteiny klasifikace MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny MeSH
Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention people who were pioneers in this area as well as we highlight all the technological and methodological advances that have transformed something available and understandable by a very few into something that has a potential to be a breathtaking change for so many. Aiming to fully understand how the human brain works is a very ambitious goal and it will surely take time to succeed. However, even that fraction of what has already been determined is sufficient e.g., to allow impaired people to regain control on their lives and significantly improve its quality. The more is discovered in this domain, the more benefit for all of us this can potentially bring.
- Klíčová slova
- Brain-Computer Interfaces, electrocorticography, electroencephalography, neuro-imaging, signal processing methods,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE are used to report the features of clinical relevance, extracted while assessing the EEGs. Selection of the terms is context sensitive: initial choices determine the subsequently presented sets of additional choices. This process automatically generates a report and feeds these features into a database. In the end, the diagnostic significance is scored, using a standardized list of terms. SCORE has specific modules for scoring seizures (including seizure semiology and ictal EEG patterns), neonatal recordings (including features specific for this age group), and for Critical Care EEG Terminology. SCORE is a useful clinical tool, with potential impact on clinical care, quality assurance, data-sharing, research and education.
- Klíčová slova
- Clinical assessment, Database, EEG, Report, Standardized, Terminology,
- MeSH
- elektroencefalografie metody normy MeSH
- lidé MeSH
- mozek fyziologie MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We investigate the model of "reversible ratchet" with interacting particles, presented by us earlier [F. Slanina, EPL 84, 50009 (2008)]. We further clarify the effect of efficiency enhancement due to interaction and show that it is of energetic origin, rather than a consequence of reduced fluctuations. We also show complicated structures emerging in the interaction and density dependence of the current and response function. The fluctuation properties of the work and input energy indicate in detail the far-from-equilibrium nature of the dynamics.
- MeSH
- chemické modely * MeSH
- molekulární motory chemie MeSH
- počítačová simulace MeSH
- přenos energie * MeSH
- statistické modely * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- molekulární motory MeSH
The article introduces an ambient intelligence system for blind people which besides providing assistance in home environment also helps with various situations and roles in which blind people may find themselves involved. RUDO, the designed system, comprises several modules that mainly support or ensure recognition of approaching people, alerting to other household members' movement in the flat, work on a computer, supervision of (sighted) children, cooperation of a sighted and a blind person (e.g., when studying), control of heating and zonal regulation by a blind person. It has a unified user interface that gives the blind person access to individual functions. The interface for blind people offers assistance with work on a computer, including writing in Braille on a regular keyboard and specialized work in informatics and electronics (e.g., programming). RUDO can complement the standard aids used by blind people at home, it increases their independence and creates conditions that allow them to become fully involved. RUDO also supports blind people sharing a home with sighted people, which contributes to their feeling of security and greater inclusion in society. RUDO has been implemented in a household for two years, which allows an evaluation of its use in practice.
- Klíčová slova
- Key RollOver, Z-Wave, ambient assisted living, artificial neural network, blind people, security, speech synthesis, user interface, work with computer, zone regulation,
- MeSH
- lidé MeSH
- počítače MeSH
- slepota MeSH
- umělá inteligence * MeSH
- uživatelské rozhraní počítače MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this work was to verify the possibility of interactions between the human TRH receptor (an integral membrane protein which belongs to family 1 of G-protein coupled receptors) and TRH-like peptides presented in the prostate gland. These peptides are characterized by substitution of basic amino acid histidine (related to authentic TRH) for neutral or acidic amino acid, such as glutamic acid, phenylalanine, glutamine or tyrosine. The physiological function of TRH-like peptides in peripheral tissues is not precisely known. However, according to our recent experiments, we assume the existence of a local hormonal network formed by TRH-like peptides and TSH in the prostate gland. The network can be associated with circulating thyroid and steroid hormones, and may represent a new regulatory mechanism influencing the proliferative ability of prostatic tissue. A similar network of authentic TRH and TSH was already found in the gastrointestinal tract. The experimentally determined 3D-structures of human TRH receptor (hTRHr) and TRH-like peptides are not available. From this point of view we used de novo modeling procedures of G-protein coupled receptors on an automated protein modeling server used at the Glaxo Wellcome Experimental Research (Geneva, Switzerland). 3D-structures of TRH-like peptides were determined with a computer program CORINA (written by the team of J. Gasteiger, Computer-Chemie-Centrum and Institute for Organic Chemistry, University of Erlangen-Nurenberg, Germany). The generated PDB files with 3D-coordinates were visualized with Swiss-Pdb Viewer Release 3.51 (Glaxo Wellcome). From recent results it is evident that polar amino acids belonging to the extracellular terminus of hTRHr transmembrane regions can participate in interactions between TRH and hTRHr. There is no direct evidence that TRH-like peptides interact with the presented hTRHr model. On the contrary, with respect to the similar 3D-shape and the identity of terminal amino acids, it appears that these interactions are highly probable as well as the nearly 100 % cross-reactions between TRH or TRH-like peptides and antibody specific against authentic TRH. Closed terminal amino acids (pyroglutamic acid and proline-amide) of TRH or TRH-like peptides are important for these interactions. Desamido-TRH or glutamyl metabolites will be repelled by the negative potential of ASP195 (E: D93) and GLU298 (G: E137).
- MeSH
- hormon uvolňující thyreotropin chemie genetika MeSH
- lidé MeSH
- molekulární modely * MeSH
- molekulární sekvence - údaje MeSH
- peptidové fragmenty chemie genetika MeSH
- počítačová simulace * MeSH
- receptory thyroliberinu chemie genetika MeSH
- sekundární struktura proteinů genetika MeSH
- sekvence aminokyselin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hormon uvolňující thyreotropin MeSH
- peptidové fragmenty MeSH
- receptory thyroliberinu MeSH