Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24317522
PubMed Central
PMC6270209
DOI
10.3390/molecules181214807
PII: molecules181214807
Knihovny.cz E-resources
- MeSH
- Antifungal Agents chemical synthesis pharmacology MeSH
- Antitubercular Agents chemical synthesis chemistry pharmacology toxicity MeSH
- Cell Line MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Inhibitory Concentration 50 MeSH
- Cricetinae MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium drug effects MeSH
- Cell Line, Tumor MeSH
- Pyrazinamide analogs & derivatives chemical synthesis chemistry pharmacology toxicity MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 5-chloropyrazinamide MeSH Browser
- Antifungal Agents MeSH
- Antitubercular Agents MeSH
- Pyrazinamide MeSH
5-Chloropyrazinamide (5-Cl-PZA) is an inhibitor of mycobacterial fatty acid synthase I with a broad spectrum of antimycobacterial activity in vitro. Some N-phenylpyrazine-2-carboxamides with different substituents on both the pyrazine and phenyl core possess significant in vitro activity against Mycobacterium tuberculosis. To test the activity of structures combining both the 5-Cl-PZA and anilide motifs a series of thirty 5-chloro-N-phenylpyrazine-2-carboxamides with various substituents R on the phenyl ring were synthesized and screened against M. tuberculosis H37Rv, M. kansasii and two strains of M. avium. Most of the compounds exerted activity against M. tuberculosis H37Rv in the range of MIC = 1.56-6.25 µg/mL and only three derivatives were inactive. The phenyl part of the molecule tolerated many different substituents while maintaining the activity. In vitro cytotoxicity was decreased in compounds with hydroxyl substituents, preferably combined with other hydrophilic substituents. 5-Chloro-N-(5-chloro-2-hydroxyphenyl)pyrazine-2-carboxamide (21) inhibited all of the tested strains (MIC = 1.56 µg/mL for M. tuberculosis; 12.5 µg/mL for other strains). 4-(5-Chloropyrazine-2-carboxamido)-2-hydroxybenzoic acid (30) preserved good activity (MIC = 3.13 µg/mL M. tuberculosis) and was rated as non-toxic in two in vitro models (Chinese hamster ovary and renal cell adenocarcinoma cell lines; SI = 47 and 35, respectively).
See more in PubMed
World Health Organization . Global Tuberculosis Report 2013. WHO; Geneva, Switzerland: 2013. pp. 8–21. (WHO/HTM/TB/2013.11).
Cynamon M.H., Speirs R.J., Welch J.T. In vitro antimycobacterial activity of 5-chloropyrazinamide. Antimicrob. Agents Chemother. 1998;42:462–463. PubMed PMC
Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI
Boshoff H.I., Mizrahi V., Barry C.E. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 2002;184:2167–2172. doi: 10.1128/JB.184.8.2167-2172.2002. PubMed DOI PMC
Ngo S.C., Zimhony O., Chung W.J., Sayahi H., Jacobs W.R., Welch J.T. Inhibition of isolated mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51:2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC
Sayahi H., Pugliese K.M., Zimhony O., Jacobs W.R., Shekhtman A., Welch J.T. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem. Biodivers. 2012;9:2582–2596. doi: 10.1002/cbdv.201200291. PubMed DOI
Ahmad Z., Tyagi S., Minkowski A., Almeida D., Nuermberger E.L., Peck K.M., Welch J.T., Baughn A.S., Jacobs W.R., Grosset J.H. Activity of 5-chloropyrazinamide in mice infected with Mycobacterium tuberculosis or Mycobacterium bovis. Indian J. Med. Res. 2012;135:808–814. PubMed PMC
Zhang Y., Mitchison D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis. 2003;7:6–21. PubMed
Dolezal M., Kesetovic D., Zitko J. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. Curr. Pharm. Des. 2011;17:3506–3514. doi: 10.2174/138161211798194477. PubMed DOI
Dolezal M., Zitko J., Jampilek J. Pyrazinecarboxylic Acid Derivatives with Antimycobacterial Activity. In: Cardona P.-J., editor. Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. InTech; Rijeka, Croatia: 2012.
Servusova B., Vobickova J., Paterova P., Kubicek V., Kunes J., Dolezal M., Zitko J. Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. Bioorg. Med. Chem. Lett. 2013;23:3589–3591. doi: 10.1016/j.bmcl.2013.04.021. PubMed DOI
Wardell S., de Souza M.V.N., Vasconcelos T.R.A., Ferreira M.D.L., Wardell J.L., Low J.N., Glidewell C. Patterns of hydrogen bonding in mono- and disubstituted N-arylpyrazinecarboxamides. Acta Crystallogr. Sect. B Struct. Sci. 2008;64:84–100. doi: 10.1107/S0108768107051804. PubMed DOI
Zitko J., Paterova P., Kubicek V., Mandikova J., Trejtnar F., Kunes J., Dolezal M. Synthesis and antimycobacterial evaluation of pyrazinamide derivatives with benzylamino substitution. Bioorg. Med. Chem. Lett. 2013;23:476–479. doi: 10.1016/j.bmcl.2012.11.052. PubMed DOI
Tostmann A., Boeree M.J., Peters W.H.M., Roelofs H.M.J., Aarnoutse R.E., van der Ven A., Dekhuijzen P.N.R. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int. J. Antimicrob. Agents. 2008;31:577–580. doi: 10.1016/j.ijantimicag.2008.01.022. PubMed DOI
Bispo M.D.F., Goncalves R.S.B., Lima C.H.D., Cardoso L.N.D., Lourenco M.C.S., de Souza M.V.N. Synthesis and Antitubercular Evaluation of N-Arylpyrazine and N,N’-Alkyl-diylpyrazine-2-carboxamide Derivatives. J. Heterocycl. Chem. 2012;49:1317–1322. doi: 10.1002/jhet.921. DOI
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kral’ova K. Substituted N-Benzylpyrazine-2-carboxamides: Synthesis and Biological Evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Tostmann A., Boeree M.J., Aarnoutse R.E., de Lange W.C.M., van der Ven A., Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. J. Gastroenterol. Hepatol. 2008;23:192–202. doi: 10.1111/j.1440-1746.2007.05207.x. PubMed DOI
Singh M., Sasi P., Rai G., Gupta V.H., Amarapurkar D., Wangikar P.P. Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Med. Chem. Res. 2011;20:1611–1615. doi: 10.1007/s00044-010-9405-3. DOI
Singh M., Sasi P., Gupta V.H., Rai G., Amarapurkar D.N., Wangikar P.P. Protective effect of curcumin, silymarin and N-acetylcysteine on antitubercular drug-induced hepatotoxicity assessed in an in vitro model. Hum. Exp. Toxicol. 2012;31:788–797. doi: 10.1177/0960327111433901. PubMed DOI
Owen T.C. Tetrazolium Compounds for Cell Viability Assays. 5,185,450. U.S. Patent. 1993 Feb 9;
Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC
National Committee for Clinical Laboratory Standards . Method for Antifungal Disc Diffusion Susceptibility Testing of Yeasts: Approved Guideline M44-A. NCCLS; Wayne, PA, USA: 2004.
Antimicrobial and Antiproliferative Properties of 2-Phenyl-N-(Pyridin-2-yl)acetamides
Synthesis, Biological Evaluation, and In Silico Modeling of N-Substituted Quinoxaline-2-Carboxamides
5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation
Design, Synthesis and Evaluation of N-pyrazinylbenzamides as Potential Antimycobacterial Agents
Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides