Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MR/K000179/1
Medical Research Council - United Kingdom
PubMed
25286859
PubMed Central
PMC4188015
DOI
10.1107/s1399004714017775
PII: S1399004714017775
Knihovny.cz E-resources
- Keywords
- active conformation, complex, insulin, insulin receptor, isothermal titration microcalorimetry, molecular dynamics,
- MeSH
- Phenylalanine MeSH
- Fibroblasts metabolism MeSH
- Insulin analogs & derivatives chemistry genetics metabolism MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Lymphocytes metabolism MeSH
- Models, Molecular MeSH
- Mutation MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Rats, Wistar MeSH
- Receptor, Insulin chemistry metabolism MeSH
- Amino Acid Substitution MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phenylalanine MeSH
- Insulin MeSH
- Receptor, Insulin MeSH
The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.
See more in PubMed
Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B. & Sheat, S. (1969). Nature (London), 224, 491–495.
Antolikova, E., Zakova, L., Turkenburg, J. P., Watson, C. J., Hanclova, I., Sanda, M., Cooper, A., Kraus, T., Brzozowski, A. M. & Jiracek, J. (2011). J. Biol. Chem. 286, 36968–36977. PubMed PMC
Case, D. A. et al. (2008). AMBER 10. University of California, San Franscisco, USA.
Cohen, P. (2006). Nature Rev. Mol. Cell Biol. 7, 867–873. PubMed
De Meyts, P. & Whittaker, J. (2002). Nature Rev. Drug Discov. 1, 769–783. PubMed
Dodson, E. J., Dodson, G. G., Hubbard, R. E. & Reynolds, C. D. (1983). Biopolymers, 22, 281–291. PubMed
Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132. PubMed
Fischer, W. H., Saunders, D., Brandenburg, D., Wollmer, A. & Zahn, H. (1985). Biol. Chem. Hoppe Seyler, 366, 521–526. PubMed
Frasca, F., Pandini, G., Scalia, P., Sciacca, L., Mineo, R., Costantino, A., Goldfine, I. D., Belfiore, A. & Vigneri, R. (1999). Mol. Cell. Biol. 19, 3278–3288. PubMed PMC
Garrett, T. P. J., Bentley, J. D., Ward, C. W., McKern, N. M., Lou, M., Frenkel, M. J., Lovrecz, G. O., Elleman, T. C. & Cosgrove, L. J. (1998). Nature (London), 394, 395–399. PubMed
Glendorf, T., Stidsen, C. E., Norrman, M., Nishimura, E., Sorensen, A. R. & Kjeldsen, T. (2011). PLoS One, 6, e20288. PubMed PMC
Herring, R., Jones, R. H. & Russell-Jones, D. L. (2014). Diabetes Obes. Metab. 16, 1–8. PubMed
Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A. & Simmerling, C. (2006). Proteins, 65, 712–725. PubMed PMC
Hua, Q. X., Shoelson, S. E., Kochoyan, M. & Weiss, M. A. (1991). Nature (London), 354, 238–241. PubMed
Hua, Q. X., Xu, B., Huang, K., Hu, S. Q., Nakagawa, S., Jia, W. H., Wang, S., Whittaker, J., Katsoyannis, P. G. & Weiss, M. A. (2009). J. Biol. Chem. 284, 14586–14596. PubMed PMC
Jiracek, J., Zakova, L., Antolikova, E., Watson, C. J., Turkenburg, J. P., Dodson, G. G. & Brzozowski, A. M. (2010). Proc. Natl Acad. Sci. USA, 107, 1966–1970. PubMed PMC
Kiselyov, V. V., Versteyhe, S., Gauguin, L. & De Meyts, P. (2009). Mol. Syst. Biol. 5, 243. PubMed PMC
Klamt, A. & Schuurmann, G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 799–805.
Kosinová, L. V. V., Novotná, P., Collinsová, M., Urbanová, M., Moody, N. R., Turkenburg, J. P., Jiráček, J., Brzozowski, A. M. & Žáková, L. (2013). Biochemistry, 53, 3392–3402. PubMed PMC
Lemmon, M. A. & Schlessinger, J. (2010). Cell, 141, 1117–1134. PubMed PMC
McKern, N. M. et al. (2006). Nature (London), 443, 218–221. PubMed
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. (2011). Acta Cryst. D67, 386–394. PubMed PMC
Menting, J. G. et al. (2013). Nature (London), 493, 241–245. PubMed
Miura, M., Surmacz, E., Burgaud, J.-L. & Baserga, R. (1995). J. Biol. Chem. 270, 22639–22644. PubMed
Moller, D. E., Yokota, A., Caro, J. F. & Flier, J. S. (1989). Mol. Endocrinol. 3, 1263–1269. PubMed
Morcavallo, A., Genua, M., Palummo, A., Kletvikova, E., Jiracek, J., Brzozowski, A. M., Iozzo, R. V., Belfiore, A. & Morrione, A. (2012). J. Biol. Chem. 287, 11422–11436. PubMed PMC
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. PubMed
Řezáč, J. & Hobza, P. (2012). J. Chem. Theory Comput. 8, 141–151. PubMed
Řezáč, J., Fanfrlík, J., Salahub, D. & Hobza, P. (2009). J. Chem. Theory Comput. 5, 1749–1760. PubMed
Sciacca, L., Le Moli, R. & Vigneri, R. (2012). Front. Endocrinol. 3, 21. PubMed PMC
Sell, C., Dumenil, G., Deveaud, C., Miura, M., Coppola, D., DeAngelis, T., Rubin, R., Efstratiadis, A. & Baserga, R. (1994). Mol. Cell. Biol. 14, 3604–3612. PubMed PMC
Smith, G. D., Pangborn, W. A. & Blessing, R. H. (2003). Acta Cryst. D59, 474–482. PubMed
Stewart, J. J. P. (2009). MOPAC2009. Stewart Computational Chemistry, Colorado Springs, USA. http://openmopac.net.
Stewart, J. J. P. (2013). J. Mol. Model. 19, 1–32. PubMed PMC
Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. (2006). Nature Rev. Mol. Cell Biol. 7, 85–96. PubMed
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25. PubMed
Whittaker, J., Whittaker, L. J., Roberts, C. T., Phillips, N. B., Ismail-Beigi, F., Lawrence, M. C. & Weiss, M. A. (2012). Proc. Natl Acad. Sci. USA, 109, 11166–11171. PubMed PMC
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed
Winter, G. (2010). J. Appl. Cryst. 43, 186–190.
Word, J. M., Lovell, S. C., Richardson, J. S. & Richardson, D. C. (1999). J. Mol. Biol. 285, 1735–1747. PubMed
Xu, B., Hu, S.-Q., Chu, Y.-C., Huang, K., Nakagawa, S. H., Whittaker, J., Katsoyannis, P. G. & Weiss, M. A. (2004). Biochemistry, 43, 8356–8372. PubMed
Xu, B., Huang, K., Chu, Y.-C., Hu, S.-Q., Nakagawa, S., Wang, S., Wang, R.-Y., Whittaker, J., Katsoyannis, P. G. & Weiss, M. A. (2009). J. Biol. Chem. 284, 14597–14608. PubMed PMC
Žáková, L., Kazdová, L., Hanclová, I., Protivínská, E., Sanda, M., Budesínský, M. & Jirácek, J. (2008). Biochemistry, 47, 5858–5868. PubMed
Žáková, L., Kletvíková, E., Veverka, V., Lepsík, M., Watson, C. J., Turkenburg, J. P., Jirácek, J. & Brzozowski, A. M. (2013). J. Biol. Chem. 288, 10230–10240. PubMed PMC
Non-glycosylated IGF2 prohormones are more mitogenic than native IGF2
A radioligand binding assay for the insulin-like growth factor 2 receptor
Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs
Rational steering of insulin binding specificity by intra-chain chemical crosslinking
PDB
4UNE, 4UNG, 4UNH