• This record comes from PubMed

The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy

. 2016 ; 7 () : 117. [epub] 20160412

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Grant support
R01 GM098539 NIGMS NIH HHS - United States
R01 DK105124 NIDDK NIH HHS - United States
K01 DK106341 NIDDK NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
R01 DK099228 NIDDK NIH HHS - United States
P30 DK079337 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
R56 DK078244 NIDDK NIH HHS - United States

IgA nephropathy (IgAN) is the most common primary glomerulonephritis, frequently leading to end-stage renal disease, as there is no disease-specific therapy. IgAN is diagnosed from pathological assessment of a renal biopsy specimen based on predominant or codominant IgA-containing immunodeposits, usually with complement C3 co-deposits and with variable presence of IgG and/or IgM. The IgA in these renal deposits is galactose-deficient IgA1, with less than a full complement of galactose residues on the O-glycans in the hinge region of the heavy chains. Research from the past decade led to the definition of IgAN as an autoimmune disease with a multi-hit pathogenetic process with contributing genetic and environmental components. In this process, circulating galactose-deficient IgA1 (autoantigen) is bound by antiglycan IgG or IgA (autoantibodies) to form immune complexes. Some of these circulating complexes deposit in glomeruli, and thereby activate mesangial cells and induce renal injury through cellular proliferation and overproduction of extracellular matrix components and cytokines/chemokines. Glycosylation pathways associated with production of the autoantigen and the unique characteristics of the corresponding autoantibodies in patients with IgAN have been uncovered. Complement likely plays a significant role in the formation and the nephritogenic activities of these complexes. Complement activation is mediated through the alternative and lectin pathways and probably occurs systemically on IgA1-containing circulating immune complexes as well as locally in glomeruli. Incidence of IgAN varies greatly by geographical location; the disease is rare in central Africa but accounts for up to 40% of native-kidney biopsies in eastern Asia. Some of this variation may be explained by genetically determined influences on the pathogenesis of the disease. Genome-wide association studies to date have identified several loci associated with IgAN. Some of these loci are associated with the increased prevalence of IgAN, whereas others, such as deletion of complement factor H-related genes 1 and 3, are protective against the disease. Understanding the molecular mechanisms and genetic and biochemical factors involved in formation and activities of pathogenic IgA1-containing immune complexes will enable the development of future disease-specific therapies as well as identification of non-invasive disease-specific biomarkers.

See more in PubMed

Berger J, Hinglais N. [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris) (1968) 74:694–5. PubMed

Jennette JC. The immunohistology of IgA nephropathy. Am J Kidney Dis (1988) 12:348–52.10.1016/S0272-6386(88)80022-2 PubMed DOI

Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int (2009) 76:534–45.10.1038/ki.2009.243 PubMed DOI

Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int (2009) 76:546–56.10.1038/ki.2009.168 PubMed DOI

Berthoux FC, Mohey H, Afiani A. Natural history of primary IgA nephropathy. Semin Nephrol (2008) 28:4–9.10.1016/j.semnephrol.2007.10.001 PubMed DOI

Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med (2013) 368:2402–14.10.1056/NEJMra1206793 PubMed DOI

McGrogan A, Franssen CF, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant (2011) 26:414–30.10.1093/ndt/gfq665 PubMed DOI

Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet (2012) 8:e1002765.10.1371/journal.pgen.1002765 PubMed DOI PMC

Varis J, Rantala I, Pasternack A, Oksa H, Jantti M, Paunu ES, et al. Immunoglobulin and complement deposition in glomeruli of 756 subjects who had committed suicide or met with a violent death. J Clin Pathol (1993) 46:607–10.10.1136/jcp.46.7.607 PubMed DOI PMC

Suzuki K, Honda K, Tanabe K, Toma H, Nihei H, Yamaguchi Y. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int (2003) 63:2286–94.10.1046/j.1523-1755.63.6s.2.x PubMed DOI

Ponticelli C, Glassock RJ. Posttransplant recurrence of primary glomerulonephritis. Clin J Am Soc Nephrol (2010) 5:2363–72.10.2215/CJN.06720810 PubMed DOI

Silva FG, Chander P, Pirani CL, Hardy MA. Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. Transplantation (1982) 33:241–6. PubMed

Schönlein H. Allgemeine und Spezielle Pathologie und Therapie. Herisau: Würtzburg; (1837).

Henoch E. Über ein eigenthümliche Form von Purpura. Berl Klin Wochenschr (1874) 11:641–3.

Faille-Kuyber EH, Kater L, Kooiker CJ, Dorhout Mees EJ. IgA-deposits in cutaneous blood-vessel walls and mesangium in Henoch-Schönlein syndrome. Lancet (1973) 1:892–3.10.1016/S0140-6736(73)91471-2 PubMed DOI

Davin JC, Ten Berge IJ, Weening JJ. What is the difference between IgA nephropathy and Henoch-Schönlein purpura nephritis? Kidney Int (2001) 59:823–34.10.1046/j.1523-1755.2001.059003823.x PubMed DOI

Davin JC. Henoch-Schönlein purpura nephritis: pathophysiology, treatment, and future strategy. Clin J Am Soc Nephrol (2011) 6:679–89.10.2215/CJN.06710810 PubMed DOI

Pohl M. Henoch-Schönlein purpura nephritis. Pediatr Nephrol (2015) 30:245–52.10.1007/s00467-014-2815-6 PubMed DOI

Mestecky J, Hammarström L. IgA-associated diseases. In: Kaetzel CS, editor. Mucosal Immune Defense: Immunoglobulin A. New York: Springer; (2007). p. 321–44.

Pouria S, Barratt J. Secondary IgA nephropathy. Semin Nephrol (2008) 28:27–37.10.1016/j.semnephrol.2007.10.004 PubMed DOI

Tissandié E, Morelle W, Berthelot L, Vrtovsnik F, Daugas E, Walker F, et al. Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases. Kidney Int (2011) 80:1352–63.10.1038/ki.2011.276 PubMed DOI

Berger J. Recurrence of IgA nephropathy in renal allografts. Am J Kidney Dis (1988) 12:371–2.10.1016/S0272-6386(88)80027-1 PubMed DOI

Odum J, Peh CA, Clarkson AR, Bannister KM, Seymour AE, Gillis D, et al. Recurrent mesangial IgA nephritis following renal transplantation. Nephrol Dial Transplant (1994) 9:309–12. PubMed

Coppo R, Amore A, Cirina P, Messina M, Basolo B, Segoloni G, et al. Characteristics of IgA and macromolecular IgA in sera from IgA nephropathy transplanted patients with and without IgAN recurrence. Contrib Nephrol (1995) 111:85–92.10.1159/000423881 PubMed DOI

Coppo R, Amore A, Cirina P, Messina M, Basolo B, Segoloni G, et al. IgA serology in recurrent and non-recurrent IgA nephropathy after renal transplantation. Nephrol Dial Transplant (1995) 10:2310–5. PubMed

Chandrakantan A, Ratanapanichkich P, Said M, Barker CV, Julian BA. Recurrent IgA nephropathy after renal transplantation despite immunosuppressive regimens with mycophenolate mofetil. Nephrol Dial Transplant (2005) 20:1214–21.10.1093/ndt/gfh773 PubMed DOI

Coppo R, Basolo B, Martina G, Rollino C, De Marchi M, Giacchino F, et al. Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch-Schönlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol (1982) 18:230–9. PubMed

Czerkinsky C, Koopman WJ, Jackson S, Collins JE, Crago SS, Schrohenloher RE, et al. Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J Clin Invest (1986) 77:1931–8.10.1172/JCI112522 PubMed DOI PMC

Schena FP, Pastore A, Ludovico N, Sinico RA, Benuzzi S, Montinaro V. Increased serum levels of IgA1-IgG immune complexes and anti-F(ab’)2 antibodies in patients with primary IgA nephropathy. Clin Exp Immunol (1989) 77:15–20. PubMed PMC

Coppo R, Emancipator S. Pathogenesis of IgA nephropathy: established observations, new insights and perspectives in treatment. J Nephrol (1994) 7:5–15.

Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int (1997) 52:509–16.10.1038/ki.1997.361 PubMed DOI

Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int (2012) 82:790–6.10.1038/ki.2012.197 PubMed DOI PMC

Gonzalez-Cabrero J, Egido J, Barat A, Gonzalez E. Detection and characterization of circulating and glomerular immune complexes in experimental IgA nephropathy. Immunology (1990) 70:296–302. PubMed PMC

van den Wall Bake AWL, Bruijn JA, Accavitti MA, Crowley-Nowick PA, Schrohenloher RE, Julian BA, et al. Shared idiotypes in mesangial deposits in IgA nephropathy are not disease-specific. Kidney Int (1993) 44:65–74.10.1038/ki.1993.214 PubMed DOI

Coppo R, Basolo B, Piccoli G, Mazzucco G, Bulzomi MR, Roccatello D, et al. IgA1 and IgA2 immune complexes in primary IgA nephropathy and Henoch-Schönlein nephritis. Clin Exp Immunol (1984) 57:583–90. PubMed PMC

Novak J, Julian BA, Tomana M, Mestecky J. Progress in molecular and genetic studies of IgA nephropathy. J Clin Immunol (2001) 21:310–27.10.1023/A:1012284402054 PubMed DOI

Russell MW, Mestecky J, Julian BA, Galla JH. IgA-associated renal diseases: antibodies to environmental antigens in sera and deposition of immunoglobulins and antigens in glomeruli. J Clin Immunol (1986) 6:74–86.10.1007/BF00915367 PubMed DOI

Novak J, Julian BA, Mestecky J, Renfrow MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol (2012) 34:365–82.10.1007/s00281-012-0306-z PubMed DOI

Tanaka A, Iwase H, Hiki Y, Kokubo T, Ishii-Karakasa I, Toma K, et al. Evidence for a site-specific fucosylation of N-linked oligosaccharide of immunoglobulin A1 from normal human serum. Glycoconj J (1998) 15:995–1000.10.1023/A:1006989910120 PubMed DOI

Gomes MM, Wall SB, Takahashi K, Novak J, Renfrow MB, Herr AB. Analysis of IgA1 N-glycosylation and its contribution to FcαRI binding. Biochemistry (2008) 47:11285–99.10.1021/bi801185b PubMed DOI PMC

Tomana M, Niedermeier W, Mestecky J, Hammack WJ. The carbohydrate composition of human myeloma IgA. Immunochemistry (1972) 9:933–40.10.1016/0019-2791(72)90166-8 PubMed DOI

Baenziger J, Kornfeld S. Structure of the carbohydrate units of IgA1 immunoglobulin II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem (1974) 249:7270–81. PubMed

Field MC, Dwek RA, Edge CJ, Rademacher TW. O-linked oligosaccharides from human serum immunoglobulin A1. Biochem Soc Trans (1989) 17:1034–5.10.1042/bst0171034 PubMed DOI

Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, et al. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem (1998) 273:2260–72.10.1074/jbc.273.4.2260 PubMed DOI

Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, et al. Identification of structural isomers in IgA1 hinge-region O-glycosylation using high-resolution mass spectrometry. J Proteome Res (2012) 11:692–702.10.1021/pr200608q PubMed DOI PMC

Andre PM, Le Pogamp P, Chevet D. Impairment of jacalin binding to serum IgA in IgA nephropathy. J Clin Lab Anal (1990) 4:115–9.10.1002/jcla.1860040208 PubMed DOI

Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol (1993) 104:172–82.10.1159/000422410 PubMed DOI

Allen AC. Abnormal glycosylation of IgA: is it related to the pathogenesis of IgA nephropathy? Nephrol Dial Transplant (1995) 10:1121–4. PubMed

Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest (1999) 104:73–81.10.1172/JCI5535 PubMed DOI PMC

Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int (2005) 67:504–13.10.1111/j.1523-1755.2005.67107.x PubMed DOI

Leung JC, Tang SC, Chan LY, Chan WL, Lai KN. Synthesis of TNF-α by mesangial cells cultured with polymeric anionic IgA – role of MAPK and NF-κB. Nephrol Dial Transplant (2008) 23:72–81.10.1093/ndt/gfm581 PubMed DOI

Tam KY, Leung JC, Chan LY, Lam MF, Tang SC, Lai KN. Macromolecular IgA1 taken from patients with familial IgA nephropathy or their asymptomatic relatives have higher reactivity to mesangial cells in vitro. Kidney Int (2009) 75:1330–9.10.1038/ki.2009.71 PubMed DOI

Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M. Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int (2002) 62:465–75.10.1046/j.1523-1755.2002.00477.x PubMed DOI

Conley ME, Cooper MD, Michael AF. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest (1980) 66:1432–6.10.1172/JCI109998 PubMed DOI PMC

Allen AC, Bailey EM, Brenchley PEC, Buck KS, Barratt J, Feehally J. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int (2001) 60:969–73.10.1046/j.1523-1755.2001.060003969.x PubMed DOI

Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int (2001) 59:1077–85.10.1046/j.1523-1755.2001.0590031077.x PubMed DOI

Allen AC, Willis FR, Beattie TJ, Feehally J. Abnormal IgA glycosylation in Henoch-Schönlein purpura restricted to patients with clinical nephritis. Nephrol Dial Transplant (1998) 13:930–4.10.1093/ndt/13.4.930 PubMed DOI

Levinsky RJ, Barratt TM. IgA immune complexes in Henoch-Schönlein purpura. Lancet (1979) 2:1100–3.10.1016/S0140-6736(79)92505-4 PubMed DOI

Zickerman AM, Allen AC, Talwar V, Olczak SA, Brownlee A, Holland M, et al. IgA myeloma presenting as Henoch-Schönlein purpura with nephritis. Am J Kidney Dis (2000) 36:E19.10.1053/ajkd.2000.16221 PubMed DOI

van der Helm-van Mil AHM, Smith AC, Pouria S, Tarelli E, Brunskill NJ, Eikenboom HC. Immunoglobulin A multiple myeloma presenting with Henoch-Schönlein purpura associated with reduced sialylation of IgA1. Br J Haematol (2003) 122:915–7.10.1046/j.1365-2141.2003.04539.x PubMed DOI

Novak J, Mestecky J. IgA immune-complex. In: Lai KN, editor. Recent Advances in IgA Nephropathy. Hong Kong: Imperial College Press and the World Scientific Publisher; (2009). p. 177–91.

Moldoveanu Z, Moro I, Radl J, Thorpe SR, Komiyama K, Mestecky J. Site of catabolism of autologous and heterologous IgA in non-human primates. Scand J Immunol (1990) 32:577–83.10.1111/j.1365-3083.1990.tb03199.x PubMed DOI

Stockert RJ, Kressner MS, Collins JC, Sternlieb I, Morell AG. IgA interaction with the asialoglycoprotein receptor. Proc Natl Acad Sci U S A (1982) 79:6229–31.10.1073/pnas.79.20.6229 PubMed DOI PMC

Tomana M, Kulhavy R, Mestecky J. Receptor-mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology (1988) 94:887–92. PubMed

Baenziger JU, Fiete D. Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell (1980) 22:611–20.10.1016/0092-8674(80)90371-2 PubMed DOI

Mestecky J, Hashim OH, Tomana M. Alterations in the IgA carbohydrate chains influence the cellular distribution of IgA1. Contrib Nephrol (1995) 111:66–72.10.1159/000423879 PubMed DOI

Phillips JO, Komiyama K, Epps JM, Russell MW, Mestecky J. Role of hepatocytes in the uptake of IgA and IgA-containing immune complexes in mice. Mol Immunol (1988) 25:873–9.10.1016/0161-5890(88)90124-1 PubMed DOI

Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther (2008) 15:1193–9.10.1038/gt.2008.60 PubMed DOI

Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, et al. The role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res (2008) 31:29–37.10.1159/000112922 PubMed DOI PMC

Novak J, Julian BA, Tomana M, Mestecky J. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol (2008) 28:78–87.10.1016/j.semnephrol.2007.10.009 PubMed DOI PMC

Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z, et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol (2013) 8:217–40.10.1146/annurev-pathol-011110-130216 PubMed DOI

Couser WG. Glomerulonephritis. Lancet (1999) 353:1509–15.10.1016/S0140-6736(98)06195-9 PubMed DOI

Coppo R, Amore A. Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int (2004) 65:1544–7.10.1111/j.1523-1755.2004.05407.x PubMed DOI

Julian BA, Novak J. IgA nephropathy: an update. Curr Opin Nephrol Hypertens (2004) 13:171–9.10.1097/00041552-200403000-00005 PubMed DOI

Haakenstad AO, Mannik M. The biology of immune complexes. In: Talal N, editor. Autoimmunity. Genetic, Immunologic, Virologic, and Clinical Aspects. New York: Academic Press; (1977). p. 277–360.

Allen AC, Harper SJ, Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol (1995) 100:470–4.10.1111/j.1365-2249.1995.tb03724.x PubMed DOI PMC

Smith AC, de Wolff JF, Molyneux K, Feehally J, Barratt J. O-glycosylation of serum IgD in IgA nephropathy. J Am Soc Nephrol (2006) 17:1192–9.10.1681/ASN.2005101115 PubMed DOI

Allen AC, Bailey EM, Barratt J, Buck KS, Feehally J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J Am Soc Nephrol (1999) 10:1763–71. PubMed

Tomana M, Novak J, Julian BA, Mestecky J. IgA1 glycosylation and the pathogenesis of IgA nephropathy. Am J Kidney Dis (2000) 35:555–6.10.1016/S0272-6386(00)70215-0 PubMed DOI

Tomana M, Niedermeier W, Mestecky J, Skvaril F. The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry (1976) 13:325–8.10.1016/0019-2791(76)90342-6 PubMed DOI

Hiki Y, Horii A, Iwase H, Tanaka A, Toda Y, Hotta K, et al. O-linked oligosaccharide on IgA1 hinge region in IgA nephropathy. Fundamental study for precise structure and possible role. Contrib Nephrol (1995) 111:73–84.10.1159/000423880 PubMed DOI

Allen AC. Methodological approaches to the analysis of IgA1 O-glycosylation in IgA nephropathy. J Nephrol (1999) 12:76–84. PubMed

Hiki Y, Kokubo T, Iwase H, Masaki Y, Sano T, Tanaka A, et al. Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy. J Am Soc Nephrol (1999) 10:760–9. PubMed

Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, et al. Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol (2000) 37:1047–56.10.1016/S0161-5890(01)00019-0 PubMed DOI

Leung JC, Tang SC, Chan DT, Lui SL, Lai KN. Increased sialylation of polymeric lambda-IgA1 in patients with IgA nephropathy. J Clin Lab Anal (2002) 16:11–9.10.1002/jcla.2035 PubMed DOI PMC

Tarelli E, Smith AC, Hendry BM, Challacombe SJ, Pouria S. Human serum IgA1 is substituted with up to six O-glycans as shown by matrix assisted laser desorption ionisation time-of-flight mass spectrometry. Carbohydr Res (2004) 339:2329–35.10.1016/j.carres.2004.07.011 PubMed DOI

Takahashi K, Hiki Y, Odani H, Shimozato S, Iwase H, Sugiyama S, et al. Structural analyses of O-glycan sugar chains on IgA1 hinge region using SELDI-TOF MS with various lectins. Biochem Biophys Res Commun (2006) 350:580–7.10.1016/j.bbrc.2006.09.075 PubMed DOI

Lau KK, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BJ, Hogg RJ, et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol (2007) 22:2067–72.10.1007/s00467-007-0623-y PubMed DOI

Moldoveanu Z, Wyatt RJ, Lee J, Tomana M, Julian BA, Mestecky J, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int (2007) 71:1148–54.10.1038/sj.ki.5002185 PubMed DOI

Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, et al. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol (2007) 44:2598–604.10.1016/j.molimm.2006.12.011 PubMed DOI PMC

Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, et al. IgA nephropathy and Henoch-Schönlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol (2007) 157:134–8.10.1159/000102455 PubMed DOI

Shimozato S, Hiki Y, Odani H, Takahashi K, Yamamoto K, Sugiyama S. Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant (2008) 23:1931–9.10.1093/ndt/gfm913 PubMed DOI

Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest (2008) 118:629–39.10.1172/JCI33189 PubMed DOI PMC

Gomes MM, Suzuki H, Brooks MT, Tomana M, Moldoveanu Z, Mestecky J, et al. Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study. Biochemistry (2010) 49:5671–82.10.1021/bi9019498 PubMed DOI PMC

Novak J, Raskova Kafkova L, Suzuki H, Tomana M, Matousovic K, Brown R, et al. IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured mesangial cells. Nephrol Dial Transplant (2011) 26:3451–7.10.1093/ndt/gfr448 PubMed DOI PMC

Franc V, Rehulka P, Raus M, Stulik J, Novak J, Renfrow MB, et al. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics (2013) 92:299–312.10.1016/j.jprot.2013.07.013 PubMed DOI PMC

Iwase H, Tanaka A, Hiki Y, Kokubo T, Karakasa-Ishii I, Kobayashi Y, et al. Estimation of the number of O-linked oligosaccharides per heavy chain of human IgA1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the hinge glycopeptide. J Biochem (1996) 120:393–7.10.1093/oxfordjournals.jbchem.a021425 PubMed DOI

Iwase H, Tanaka A, Hiki Y, Kokubo T, Ishii-Karakasa I, Nishikido J, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to the analysis of glycopeptide-containing multiple O-linked oligosaccharides. J Chromatogr B Biomed Sci Appl (1998) 709:145–9.10.1016/S0378-4347(98)00050-4 PubMed DOI

Iwase H, Tanaka A, Hiki Y, Kokubo T, Sano T, Ishii-Karakasa I, et al. Aggregated human serum immunoglobulin A1 induced by neuraminidase treatment had a lower number of O-linked sugar chains on the hinge portion. J Chromatogr (1999) 724:1–7.10.1016/S0378-4347(98)00552-0 PubMed DOI

Odani H, Hiki Y, Takahashi M, Nishimoto A, Yasuda Y, Iwase H, et al. Direct evidence for decreased sialylation and galactosylation of human serum IgA1 Fc O-glycosylated hinge peptides in IgA nephropathy by mass spectrometry. Biochem Biophys Res Commun (2000) 271:268–74.10.1006/bbrc.2000.2613 PubMed DOI

Horie A, Hiki Y, Odani H, Yasuda Y, Takahashi M, Kato M, et al. IgA1 molecules produced by tonsillar lymphocytes are under-O-glycosylated in IgA nephropathy. Am J Kidney Dis (2003) 42:486–96.10.1016/S0272-6386(03)00743-1 PubMed DOI

Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, et al. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem (2005) 280:19136–45.10.1074/jbc.M411368200 PubMed DOI

Renfrow MB, MacKay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem (2007) 389:1397–407.10.1007/s00216-007-1500-z PubMed DOI

Takahashi K, Wall SB, Suzuki H, Smith AD, Hall S, Poulsen K, et al. Clustered O-glycans of IgA1: defining macro- and micro-heterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics (2010) 9:2545–57.10.1074/mcp.M110.001834 PubMed DOI PMC

Rebecchi KR, Wenke JL, Go EP, Desaire H. Label-free quantitation: a new glycoproteomics approach. J Am Soc Mass Spectrom (2009) 20:1048–59.10.1016/j.jasms.2009.01.013 PubMed DOI

Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, et al. Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics (2010) 9:719–27.10.1074/mcp.M900450-MCP200 PubMed DOI PMC

Woof JM, Mestecky J. Mucosal immunoglobulins. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 287–324.

Johansen FE, Braathen R, Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. Scand J Immunol (2000) 52:240–8.10.1046/j.1365-3083.2000.00790.x PubMed DOI

Mestecky J, Russell MW. IgA subclasses. Monogr Allergy (1986) 19:277–301. PubMed

Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med (1987) 106:892–9.10.7326/0003-4819-106-6-892 PubMed DOI

Kilian M, Russell MW. Microbial evasion of IgA functions. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 455–70.

Baker K, Blumberg RS, Kaetzel CS. Immunoglobulin transport and immunoglobulin receptors. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 349–408.

Harper SJ, Allen AC, Pringle JH, Feehally J. Increased dimeric IgA producing B cells in the bone marrow in IgA nephropathy determined by in situ hybridisation for J chain mRNA. J Clin Pathol (1996) 49:38–42.10.1136/jcp.49.1.38 PubMed DOI PMC

Hiki Y, Iwase H, Kokubo T, Horii A, Tanaka A, Nishikido J, et al. Association of asialo-galactosyl ß1-3N-acetylgalactosamine on the hinge with a conformational instability of Jacalin-reactive immunoglobulin A1 in immunoglobulin A nephropathy. J Am Soc Nephrol (1996) 7:955–60. PubMed

Kokubo T, Hiki Y, Iwase H, Tanaka A, Toma K, Hotta K, et al. Protective role of IgA1 glycans against IgA1 self-aggregation and adhesion to extracellular matrix proteins. J Am Soc Nephrol (1998) 9:2048–54. PubMed

Clarkson AR, Woodroffe AJ, Bannister KM, Lomax-Smith JD, Aarons I. The syndrome of IgA nephropathy. Clin Nephrol (1984) 21:7–14. PubMed

Pakkanen SH, Kantele JM, Moldoveanu Z, Hedges S, Hakkinen M, Mestecky J, et al. Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin Vaccine Immunol (2010) 17:393–401.10.1128/CVI.00475-09 PubMed DOI PMC

Russell MW, Lue C, van den Wall Bake AW, Moldoveanu Z, Mestecky J. Molecular heterogeneity of human IgA antibodies during an immune response. Clin Exp Immunol (1992) 87:1–6.10.1111/j.1365-2249.1992.tb06404.x PubMed DOI PMC

Russell MW, Kilian M, Mantis NJ, Corthésy B. Biological activities of IgA. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 429–54.

Smith AC, Molyneux K, Feehally J, Barratt J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J Am Soc Nephrol (2006) 17:3520–8.10.1681/ASN.2006060658 PubMed DOI

de Fijter JW, Eijgenraam JW, Braam CA, Holmgren J, Daha MR, van Es LA, et al. Deficient IgA1 immune response to nasal cholera toxin subunit B in primary IgA nephropathy. Kidney Int (1996) 50:952–61.10.1038/ki.1996.396 PubMed DOI

Roodnat JI, de Fijter JW, van Kooten C, Daha MR, van Es LA. Decreased IgA1 response after primary oral immunization with live typhoid vaccine in primary IgA nephropathy. Nephrol Dial Transplant (1999) 14:353–9.10.1093/ndt/14.2.353 PubMed DOI

Oortwijn BD, van der Boog PJ, Roos A, van der Geest RN, de Fijter JW, Daha MR, et al. A pathogenic role for secretory IgA in IgA nephropathy. Kidney Int (2006) 69:1131–8.10.1038/sj.ki.5000074 PubMed DOI

Oortwijn BD, Rastaldi MP, Roos A, Mattinzoli D, Daha MR, van Kooten C. Demonstration of secretory IgA in kidneys of patients with IgA nephropathy. Nephrol Dial Transplant (2007) 22:3191–5.10.1093/ndt/gfm346 PubMed DOI

Tomino Y, Sakai H, Miura M, Endoh M, Nomoto Y. Detection of polymeric IgA in glomeruli from patients with IgA nephropathy. Clin Exp Immunol (1982) 49:419–25. PubMed PMC

Eijgenraam JW, Oortwijn BD, Kamerling SW, de Fijter JW, van den Wall Bake AW, Daha MR, et al. Secretory immunoglobulin A (IgA) responses in IgA nephropathy patients after mucosal immunization, as part of a polymeric IgA response. Clin Exp Immunol (2008) 152:227–32.10.1111/j.1365-2249.2008.03616.x PubMed DOI PMC

Le W, Liang S, Chen H, Wang S, Zhang W, Wang X, et al. Long-term outcome of IgA nephropathy patients with recurrent macroscopic hematuria. Am J Nephrol (2014) 40:43–50.10.1159/000364954 PubMed DOI

Feehally J, Allen AC. Structural features of IgA molecules which contribute to IgA nephropathy. J Nephrol (1999) 12:59–65. PubMed

Nagayama Y, Nishiwaki H, Hasegawa T, Komukai D, Kawashima E, Takayasu M, et al. Impact of the new risk stratification in the 2011 Japanese Society of Nephrology clinical guidelines for IgA nephropathy on incidence of early clinical remission with tonsillectomy plus steroid pulse therapy. Clin Exp Nephrol (2015) 19:646–52.10.1007/s10157-014-1052-4 PubMed DOI

Feehally J, Coppo R, Troyanov S, Bellur SS, Cattran D, Cook T, et al. Tonsillectomy in a European cohort of 1,147 patients with IgA nephropathy. Nephron (2016) 132:15–24.10.1159/000441852 PubMed DOI

Chen X, Liu H, Peng Y, He L, Zhang Y, Xie Y, et al. Expression and correlation analysis of IL-4, IFN-gamma and FcαRI in tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol (2014) 289:70–5.10.1016/j.cellimm.2014.03.004 PubMed DOI

Wu G, Peng YM, Liu FY, Xu D, Liu C. The role of memory B cell in tonsil and peripheral blood in the clinical progression of IgA nephropathy. Hum Immunol (2013) 74:708–12.10.1016/j.humimm.2012.10.028 PubMed DOI

Li W, Peng X, Liu Y, Liu H, Liu F, He L, et al. TLR9 and BAFF: their expression in patients with IgA nephropathy. Mol Med Rep (2014) 10:1469–74.10.3892/mmr.2014.2359 PubMed DOI

McCarthy DD, Chiu S, Gao Y, Summers-deLuca LE, Gommerman JL. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol (2006) 241:85–94.10.1016/j.cellimm.2006.08.002 PubMed DOI

McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest (2011) 121:3991–4002.10.1172/JCI45563 PubMed DOI PMC

Xin G, Shi W, Xu LX, Su Y, Yan LJ, Li KS. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol (2013) 26:683–90.10.5301/jn.5000218 PubMed DOI

Kennel-de March A, Bene MC, Renoult E, Kessler M, Faure GC, Kolopp-Sarda MN. Enhanced expression of L-selectin on peripheral blood lymphocytes from patients with IgA nephropathy. Clin Exp Immunol (1999) 115:542–6.10.1046/j.1365-2249.1999.00823.x PubMed DOI PMC

Takei T, Iida A, Nitta K, Tanaka T, Ohnishi Y, Yamada R, et al. Association between single-nucleotide polymorphisms in selectin genes and immunoglobulin A nephropathy. Am J Hum Genet (2002) 70:781–6.10.1086/339077 PubMed DOI PMC

Suzuki H, Raska M, Yamada K, Moldoveanu Z, Julian BA, Wyatt RJ, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem (2014) 289:5330–9.10.1074/jbc.M113.512277 PubMed DOI PMC

Suzuki H, Moldoveanu Z, Hall S, Brown R, Julian BA, Wyatt RJ, et al. IgA nephropathy: characterization of IgG antibodies specific for galactose-deficient IgA1. Contrib Nephrol (2007) 157:129–33.10.1159/0000102454 PubMed DOI

Yamaguchi K, Ozono Y, Harada T, Hara K. Changes in circulating immune complex and charge distribution with upper respiratory tract inflammation in IgA nephropathy. Nephron (1995) 69:384–90.10.1159/000188507 PubMed DOI

Rostoker G, Rymer JC, Bagnard G, Petit-Phar M, Griuncelli M, Pilatte Y. Imbalances in serum proinflammatory cytokines and their soluble receptors: a putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Schönlein purpura nephritis, and a potential target of immunoglobulin therapy? Clin Exp Immunol (1998) 114:468–76.10.1046/j.1365-2249.1998.00745.x PubMed DOI PMC

Nelson CL, Karschimkus CS, Dragicevic G, Packham DK, Wilson AM, O’Neal D, et al. Systemic and vascular inflammation is elevated in early IgA and type 1 diabetic nephropathies and relates to vascular disease risk factors and renal function. Nephrol Dial Transplant (2005) 20:2420–6.10.1093/ndt/gfi067 PubMed DOI

Yamada K, Reily C, Huang ZQ, Anderson JC, Raska M, Suzuki H, et al. Characterization of a signaling network that enhances production of galactose-deficient IgA1 in IgA1-secreting cells from patients with IgA Nephropathy. J Am Soc Nephrol (2015) 26:591A.

Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J (2003) 374:1–20.10.1042/bj20030407 PubMed DOI PMC

Raska M, Moldoveanu Z, Suzuki H, Brown R, Kulhavy R, Andrasi J, et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J Mol Biol (2007) 369:69–78.10.1016/j.jmb.2007.03.002 PubMed DOI PMC

Takahashi K, Raska M, Stuchlova Horynova M, Hall SD, Poulsen K, Kilian M, et al. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One (2014) 9:e99026.10.1371/journal.pone.0099026 PubMed DOI PMC

Reily C, Ueda H, Huang ZQ, Mestecky J, Julian BA, Willey CD, et al. Cellular signaling and production of galactose-deficient IgA1 in IgA nephropathy, an autoimmune disease. J Immunol Res (2014) 2014:197548.10.1155/2014/197548 PubMed DOI PMC

Stein JV, Lopez-Fraga M, Elustondo FA, Carvalho-Pinto CE, Rodriguez D, Gomez-Caro R, et al. APRIL modulates B and T cell immunity. J Clin Invest (2002) 109:1587–98.10.1172/JCI0215034 PubMed DOI PMC

Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet (2011) 43:321–7.10.1038/ng.787 PubMed DOI PMC

Meng HX, Ohe R, Li HN, Yang SR, Kabasawa T, Kato T, et al. Immunoglobulin and CD8(+) T-cell distribution in histologically distinctive tonsils of individuals with tonsillar focal infection. Acta Otolaryngol (2015) 135:264–70.10.3109/00016489.2014.968802 PubMed DOI

Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol (2008) 19:1008–14.10.1681/ASN.2007091052 PubMed DOI PMC

Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem (1982) 51:531–54.10.1146/annurev.bi.51.070182.002531 PubMed DOI

Roggenbuck D, Mytilinaiou MG, Lapin SV, Reinhold D, Conrad K. Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. Auto Immun Highlights (2012) 3:119–25.10.1007/s13317-012-0041-4 PubMed DOI PMC

Tabak LA. The role of mucin-type O-glycans in eukaryotic development. Semin Cell Dev Biol (2010) 21:616–21.10.1016/j.semcdb.2010.02.001 PubMed DOI PMC

Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, et al. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem (2011) 286:14493–507.10.1074/jbc.M111.218701 PubMed DOI PMC

Iwasaki H, Zhang Y, Tachibana K, Gotoh M, Kikuchi N, Kwon YD, et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem (2003) 278:5613–21.10.1074/jbc.M211097200 PubMed DOI

Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, et al. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology (2007) 17:374–87.10.1093/glycob/cwl082 PubMed DOI

Raska M, Yamada K, Horynova M, Takahashi K, Suzuki H, Moldoveanu Z, et al. Role of GalNAc-transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol (2011) 22:625A.

Raska M, Yamada K, Stewart T, Stuchlova Horynova M, Huang Z, Suzuki H, et al. Role of N-acetylgalactosaminyl transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol (2012) 23:519A.

Novakova J, Stewart T, Yamada K, Suzuki H, Moldoveanu Z, Julian BA, et al. Overexpression of N-acetylgalactosaminyltransferase-14 contributes to galactose-deficient IgA1 production: relevance for IgA nephropathy. J Am Soc Nephrol (2013) 24:492A.

Wang H, Tachibana K, Zhang Y, Iwasaki H, Kameyama A, Cheng L, et al. Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun (2003) 300:738–44.10.1016/S0006-291X(02)02908-X PubMed DOI

Takahashi K, Suzuki H, Yamada K, Hall S, Moldoveanu Z, Poulsen K, et al. Molecular characterization of IgA1 secreted by IgA1-producing cell lines from patients with IgA nephropathy. J Am Soc Nephrol (2012) 23:853A.

Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM. Cloning and expression of human core 1 β1,3-galactosyltransferase. J Biol Chem (2002) 277:178–86.10.1074/jbc.M109060200 PubMed DOI

Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, et al. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci U S A (2010) 107:9228–33.10.1073/pnas.0914004107 PubMed DOI PMC

Ju T, Cummings RD. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. Proc Natl Acad Sci U S A (2002) 99:16613–8.10.1073/pnas.262438199 PubMed DOI PMC

Ju T, Cummings RD. Protein glycosylation: chaperone mutation in Tn syndrome. Nature (2005) 437:1252.10.1038/4371252a PubMed DOI

Ju T, Aryal RP, Stowell CJ, Cummings RD. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol (2008) 182:531–42.10.1083/jcb.200711151 PubMed DOI PMC

Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res (2008) 68:1636–46.10.1158/0008-5472.CAN-07-2345 PubMed DOI

Malycha F, Eggermann T, Hristov M, Schena FP, Mertens PR, Zerres K, et al. No evidence for a role of cosmc-chaperone mutations in European IgA nephropathy patients. Nephrol Dial Transplant (2009) 24:321–4.10.1093/ndt/gfn538 PubMed DOI

Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J (2001) 18:841–50.10.1023/A:1022288022969 PubMed DOI

Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase family. Biochimie (2001) 83:727–37.10.1016/S0300-9084(01)01301-3 PubMed DOI

Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol (2011) 22:1795–803.10.1681/ASN.2011050464 PubMed DOI PMC

Stuchlova Horynova M, Vrablikova A, Stewart TJ, Takahashi K, Czernekova L, Yamada K, et al. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant (2015) 30:234–8.10.1093/ndt/gfu308 PubMed DOI PMC

Julian BA, Wyatt RJ, Matousovic K, Moldoveanu Z, Mestecky J, Novak J. IgA nephropathy: a clinical overview. Contrib Nephrol (2007) 157:19–26. PubMed

Lin X, Ding J, Zhu L, Shi S, Jiang L, Zhao M, et al. Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant (2009) 24:3372–5.10.1093/ndt/gfp294 PubMed DOI

Hastings MC, Moldoveanu Z, Julian BA, Novak J, Sanders JT, McGlothan KR, et al. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol (2010) 5:2069–74.10.2215/CJN.03270410 PubMed DOI PMC

Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int (2011) 80:79–87.10.1038/ki.2011.16 PubMed DOI PMC

Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet (2014) 46:1187–96.10.1038/ng.3118 PubMed DOI PMC

Novak J, Raska M, Mestecky J, Julian BA. IgA nephropathy and related diseases. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 2023–38.

Yanagawa H, Suzuki H, Suzuki Y, Kiryluk K, Gharavi AG, Matsuoka K, et al. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One (2014) 9:e98081.10.1371/journal.pone.0098081 PubMed DOI PMC

Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest (2009) 119:1668–77.10.1172/JCI38468 PubMed DOI PMC

Huang ZQ, Raska M, Stewart T, Reily C, King RG, Crossman DK, et al. Somatic mutations modulate autoantibodies against galactose-deficient IgA1 in IgA nephropathy. J Am Soc Nephrol (2016).10.1681/ASN.2014101044 PubMed DOI PMC

Iwase H, Yokozeki Y, Hiki Y, Tanaka A, Kokubo T, Sano T, et al. Human serum immunoglobulin G3 subclass bound preferentially to asialo-, agalactoimmunoglobulin A1/sepharose. Biochem Biophys Res Commun (1999) 264:424–9.10.1006/bbrc.1999.1369 PubMed DOI

Kokubo T, Hiki Y, Iwase H, Tanaka A, Nishikido J, Hotta K, et al. Exposed peptide core of IgA1 hinge region in IgA nephropathy. Nephrol Dial Transplant (1999) 14:81–5.10.1093/ndt/14.1.81 PubMed DOI

Chen A, Chen WP, Sheu LF, Lin CY. Pathogenesis of IgA nephropathy: in vitro activation of human mesangial cells by IgA immune complex leads to cytokine secretion. J Pathol (1994) 173:119–26.10.1002/path.1711730208 PubMed DOI

Gomez-Guerrero C, Alonso J, Lopez-Armada MJ, Ruiz-Ortega M, Gomez-Garre D, Alcazar R, et al. Potential factors governing extracellular matrix production by mesangial cells: their relevance for the pathogenesis of IgA nephropathy. Contrib Nephrol (1995) 111:45–54.10.1159/000423876 PubMed DOI

Amore A, Cirina P, Conti G, Brusa P, Peruzzi L, Coppo R. Glycosylation of circulating IgA in patients with IgA nephropathy modulates proliferation and apoptosis of mesangial cells. J Am Soc Nephrol (2001) 12:1862–71. PubMed

Leung JC, Tsang AW, Chan LY, Tang SC, Lam MF, Lai KN. Size-dependent binding of IgA to HepG2, U937, and human mesangial cells. J Lab Clin Med (2002) 140:398–406.10.1067/mlc.2002.129338 PubMed DOI

Leung JC, Tang SC, Chan LY, Tsang AW, Lan HY, Lai KN. Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrol Dial Transplant (2003) 18:36–45.10.1093/ndt/18.1.36 PubMed DOI

Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Lai FM, et al. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol (2008) 294:F945–55.10.1152/ajprenal.00423.2007 PubMed DOI

Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Tam KY, et al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant (2009) 24:62–72.10.1093/ndt/gfn441 PubMed DOI

Yanagihara T, Brown R, Hall S, Moldoveanu Z, Goepfert A, Julian BA, et al. In vitro-formed immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results Immunol (2012) 2:166–72.10.1016/j.rinim.2012.08.002 PubMed DOI PMC

Huang ZQ, Anderson JC, Hall S, Rohrbach TD, Brown R, Julian BA, et al. Immune complexes from patients with IgA nephropathy containing galactose-deficient IgA1 and anti-glycan antibodies induce protein-kinase signaling and proliferation in cultured human mesangial cells. J Am Soc Nephrol (2011) 22:531A.

Huang ZQ, Anderson J, Rohrbach TD, Hall S, Brown R, Julian BA, et al. Characterization of signaling pathways in cultured human mesangial cells induced by IgA1-containing immune complexes from patients with IgA nephropathy. J Am Soc Nephrol (2012) 23:824A.

Muda AO, Feriozzi S, Rahimi S, Faraggiana T. Spatial arrangement of IgA and C3 as a prognostic indicator of IgA nephropathy. J Pathol (1995) 177:201–8.10.1002/path.1711770214 PubMed DOI

Abrera-Abeleda MA, Nishimura C, Smith JL, Sethi S, McRae JL, Murphy BF, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet (2006) 43:582–9.10.1136/jmg.2005.038315 PubMed DOI PMC

Fritsche LG, Lauer N, Hartmann A, Stippa S, Keilhauer CN, Oppermann M, et al. An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum Mol Genet (2010) 19:4694–704.10.1093/hmg/ddq399 PubMed DOI

Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol (2015) 26:1195–204.10.1681/ASN.2014010096 PubMed DOI PMC

Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol (2015) 26:1503–12.10.1681/ASN.2014101000 PubMed DOI PMC

Maillard N, Boerma L, Hall S, Huang ZQ, Mrug M, Moldoveanu Z, et al. Proteomic analysis of engineered IgA1-IgG immune complexes reveals association with activated complement C3. J Am Soc Nephrol (2013) 24:490A.

Miyazaki R, Kuroda M, Akiyama T, Otani I, Tofuku Y, Takeda R. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin Nephrol (1984) 21:335–40. PubMed

Sahu A, Lambris JD. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev (2001) 180:35–48.10.1034/j.1600-065X.2001.1800103.x PubMed DOI

Cybulsky AV, Takano T, Papillon J, McTavish AJ. Complement-induced phospholipase A2 activation in experimental membranous nephropathy. Kidney Int (2000) 57:1052–62.10.1046/j.1523-1755.2000.00932.x PubMed DOI

Qiu W, Zhou J, Zhu G, Zhao D, He F, Zhang J, et al. Sublytic C5b-9 triggers glomerular mesangial cell apoptosis via XAF1 gene activation mediated by p300-dependent IRF-1 acetylation. Cell Death Dis (2014) 5:e1176.10.1038/cddis.2014.153 PubMed DOI PMC

Evans DJ, Williams DG, Peters DK, Sissons JG, Boulton-Jones JM, Ogg CS, et al. Glomerular deposition of properdin in Henoch-Schönlein syndrome and idiopathic focal nephritis. Br Med J (1973) 3:326–8.10.1136/bmj.3.5875.326 PubMed DOI PMC

McCoy RC, Abramowsky CR, Tisher CC. IgA nephropathy. Am J Pathol (1974) 76:123–44. PubMed PMC

Wyatt RJ. The complement system in IgA nephropathy and Henoch-Schönlein purpura: functional and genetic aspects. Contrib Nephrol (1993) 104:82–91.10.1159/000422400 PubMed DOI

Tomino Y, Sakai H, Nomoto Y, Endoh M, Arimori S, Fujita T. Deposition of C4-binding protein and ß 1H globulin in kidneys of patients with IgA nephropathy. Tokai J Exp Clin Med (1981) 6:217–22. PubMed

Rauterberg EW, Lieberknecht HM, Wingen AM, Ritz E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int (1987) 31:820–9.10.1038/ki.1987.72 PubMed DOI

Lagrue G, Branellec A, Intrator L, Moisy M, Sobel A. [Measurements of serum C3d in primitive chronic glomerular nephropathies (author’s transl)]. Nouv Presse Med (1979) 8:1153–6. PubMed

Solling J. Circulating immune complexes and complement breakdown product C3d in glomerulonephritis and kidney transplantation. Acta Pathol Microbiol Immunol Scand C (1984) 92:213–20. PubMed

Wyatt RJ, Kanayama Y, Julian BA, Negoro N, Sugimoto S, Hudson EC, et al. Complement activation in IgA nephropathy. Kidney Int (1987) 31:1019–23.10.1038/ki.1987.101 PubMed DOI

Hiemstra PS, Gorter A, Stuurman ME, Van Es LA, Daha MR. Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol (1987) 17:321–6.10.1002/eji.1830170304 PubMed DOI

Russell MW, Mansa B. Complement-fixing properties of human IgA antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, IgA. Scand J Immunol (1989) 30:175–83.10.1111/j.1365-3083.1989.tb01199.x PubMed DOI

Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT. Complement factor H related proteins (CFHRs). Mol Immunol (2013) 56:170–80.10.1016/j.molimm.2013.06.001 PubMed DOI

Endo M, Ohi H, Ohsawa I, Fujita T, Matsushita M, Fujita T. Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy. Nephrol Dial Transplant (1998) 13:1984–90.10.1093/ndt/13.8.1984 PubMed DOI

Faria B, Henriques C, Matos AC, Daha MR, Pestana M, Seelen M. Combined C4d and CD3 immunostaining predicts immunoglobulin (Ig)A nephropathy progression. Clin Exp Immunol (2015) 179:354–61.10.1111/cei.12461 PubMed DOI PMC

Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol (2001) 167:2861–8.10.4049/jimmunol.167.5.2861 PubMed DOI

Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol (2006) 17:1724–34.10.1681/ASN.2005090923 PubMed DOI

Espinosa M, Ortega R, Sanchez M, Segarra A, Salcedo MT, Gonzalez F, et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol (2014) 9:897–904.10.2215/CJN.09710913 PubMed DOI PMC

D’Amico G, Imbasciati E, Barbiano Di Belgioioso G, Bertoli S, Fogazzi G, Ferrario F, et al. Idiopathic IgA mesangial nephropathy. Clinical and histological study of 374 patients. Medicine (Baltimore) (1985) 64:49–60.10.1097/00005792-198501000-00004 PubMed DOI

Miyamoto H, Yoshioka K, Takemura T, Akano N, Maki S. Immunohistochemical study of the membrane attack complex of complement in IgA nephropathy. Virchows Arch A Pathol Anat Histopathol (1988) 413:77–86.10.1007/BF00844284 PubMed DOI

Onda K, Ohsawa I, Ohi H, Tamano M, Mano S, Wakabayashi M, et al. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol (2011) 12:64.10.1186/1471-2369-12-64 PubMed DOI PMC

Zhang J, Li Y, Shan K, Wang L, Qiu W, Lu Y, et al. Sublytic C5b-9 induces IL-6 and TGF-ß1 production by glomerular mesangial cells in rat Thy-1 nephritis through p300-mediated C/EBPß acetylation. FASEB J (2014) 28:1511–25.10.1096/fj.13-242693 PubMed DOI

Nangaku M, Shankland SJ, Couser WG. Cellular response to injury in membranous nephropathy. J Am Soc Nephrol (2005) 16:1195–204.10.1681/ASN.2004121098 PubMed DOI

Waldo FB, Cochran AM. Mixed IgA-IgG aggregates as a model of immune complexes in IgA nephropathy. J Immunol (1989) 142:3841–6. PubMed

Pickering MC, D’Agati VD, Nester CM, Smith RJ, Haas M, Appel GB, et al. C3 glomerulopathy: consensus report. Kidney Int (2013) 84:1079–89.10.1038/ki.2013.377 PubMed DOI PMC

van den Dobbelsteen ME, Verhasselt V, Kaashoek JG, Timmerman JJ, Schroeijers WE, Verweij CL, et al. Regulation of C3 and factor H synthesis of human glomerular mesangial cells by IL-1 and interferon-gamma. Clin Exp Immunol (1994) 95:173–80.10.1111/j.1365-2249.1994.tb06033.x PubMed DOI PMC

Schmitt R, Stahl AL, Olin AI, Kristoffersson AC, Rebetz J, Novak J, et al. The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol (2014) 193:317–26.10.4049/jimmunol.1302249 PubMed DOI PMC

Wan JX, Fukuda N, Endo M, Tahira Y, Yao EH, Matsuda H, et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells. J Cell Physiol (2007) 213:495–501.10.1002/jcp.21129 PubMed DOI

Komatsu H, Fujimoto S, Hara S, Sato Y, Yamada K, Eto T. Relationship between serum IgA/C3 ratio and progression of IgA nephropathy. Intern Med (2004) 43:1023–8.10.2169/internalmedicine.43.1023 PubMed DOI

Zhang J, Wang C, Tang Y, Peng H, Ye ZC, Li CC, et al. Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin A nephropathy. Nephrology (2013) 18:125–31.10.1111/nep.12010 PubMed DOI

Mizerska-Wasiak M, Maldyk J, Rybi-Szuminska A, Wasilewska A, Miklaszewska M, Pietrzyk J, et al. Relationship between serum IgA/C3 ratio and severity of histological lesions using the Oxford classification in children with IgA nephropathy. Pediatr Nephrol (2015) 30:1113–20.10.1007/s00467-014-3024-z PubMed DOI

Onda K, Ohi H, Tamano M, Ohsawa I, Wakabayashi M, Horikoshi S, et al. Hypercomplementemia in adult patients with IgA nephropathy. J Clin Lab Anal (2007) 21:77–84.10.1002/jcla.20154 PubMed DOI PMC

Edey M, Strain L, Ward R, Ahmed S, Thomas T, Goodship TH. Is complement factor H a susceptibility factor for IgA nephropathy? Mol Immunol (2009) 46:1405–8.10.1016/j.molimm.2008.12.002 PubMed DOI

Zhang JJ, Jiang L, Liu G, Wang SX, Zou WZ, Zhang H, et al. Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity. Scand J Immunol (2009) 69:457–64.10.1111/j.1365-3083.2009.02234.x PubMed DOI

Kim SJ, Koo HM, Lim BJ, Oh HJ, Yoo DE, Shin DH, et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One (2012) 7:e40495.10.1371/journal.pone.0040495 PubMed DOI PMC

Nasri H, Sajjadieh S, Mardani S, Momeni A, Merikhi A, Madihi Y, et al. Correlation of immunostaining findings with demographic data and variables of Oxford classification in IgA nephropathy. J Nephropathol (2013) 2:190–5.10.12860/JNP.2013.30 PubMed DOI PMC

Heinen S, Hartmann A, Lauer N, Wiehl U, Dahse HM, Schirmer S, et al. Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood (2009) 114:2439–47.10.1182/blood-2009-02-205641 PubMed DOI

Maeng YI, Kim MK, Park JB, Cho CH, Oh HK, Sung WJ, et al. Glomerular and tubular C4d depositions in IgA nephropathy: relations with histopathology and with albuminuria. Int J Clin Exp Pathol (2013) 6:904–10. PubMed PMC

Ning L, Kurihara H, de Vega S, Ichikawa-Tomikawa N, Xu Z, Nonaka R, et al. Laminin α1 regulates age-related mesangial cell proliferation and mesangial matrix accumulation through the TGF-ß pathway. Am J Pathol (2014) 184:1683–94.10.1016/j.ajpath.2014.02.006 PubMed DOI PMC

Tamouza H, Chemouny JM, Raskova Kafkova L, Berthelot L, Flamant M, Demion M, et al. The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int (2012) 82:1284–96.10.1038/ki.2012.192 PubMed DOI PMC

Castro NE, Kato M, Park JT, Natarajan R. Transforming growth factor ß1 (TGF-ß1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J Biol Chem (2014) 289:29001–13.10.1074/jbc.M114.600783 PubMed DOI PMC

Wunsche C, Koch A, Goldschmeding R, Schwalm S, Meyer Zu Heringdorf D, Huwiler A, et al. Transforming growth factor ß2 (TGF-ß2)-induced connective tissue growth factor (CTGF) expression requires sphingosine 1-phosphate receptor 5 (S1P5) in human mesangial cells. Biochim Biophys Acta (2015) 1851:519–26.10.1016/j.bbalip.2015.01.003 PubMed DOI

Diven SC, Caflisch CR, Hammond DK, Weigel PH, Oka JA, Goldblum RM. IgA induced activation of human mesangial cells: Independent of FcαR1 (CD 89). Kidney Int (1998) 54:837–47.10.1046/j.1523-1755.1998.00054.x PubMed DOI

Westerhuis R, Van Zandbergen G, Verhagen NA, Klar-Mohamad N, Daha MR, van Kooten C. Human mesangial cells in culture and in kidney sections fail to express Fcα receptor (CD89). J Am Soc Nephrol (1999) 10:770–8. PubMed

Leung JC, Tsang AW, Chan DT, Lai KN. Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J Am Soc Nephrol (2000) 11:241–9. PubMed

Barratt J, Greer MR, Pawluczyk IZ, Allen AC, Bailey EM, Buck KS, et al. Identification of a novel Fcα receptor expressed by human mesangial cells. Kidney Int (2000) 57:1936–48.10.1046/j.1523-1755.2000.00043.x PubMed DOI

van Egmond M, Bakema JE, Woof JM. Fc receptors in mucosal immunology. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 2023–38.

Haddad E, Moura IC, Arcos-Fajardo M, Macher MA, Baudouin V, Alberti C, et al. Enhanced expression of the CD71 mesangial IgA1 receptor in Berger disease and Henoch-Schönlein nephritis: association between CD71 expression and IgA deposits. J Am Soc Nephrol (2003) 14:327–37.10.1097/01.ASN.0000046961.04917.83 PubMed DOI

Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, et al. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol (2004) 15:622–34.10.1097/01.ASN.0000115401.07980.0C PubMed DOI

Berthelot L, Papista C, Maciel TT, Biarnes-Pelicot M, Tissandie E, Wang PH, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med (2012) 209:793–806.10.1084/jem.20112005 PubMed DOI PMC

Kaneko Y, Otsuka T, Tsuchida Y, Gejyo F, Narita I. Integrin α1/ß1 and α2/ß1 as a receptor for IgA1 in human glomerular mesangial cells in IgA nephropathy. Int Immunol (2012) 24:219–32.10.1093/intimm/dxr125 PubMed DOI

Kaetzel C, Russell MW. Phylogeny and comparative physiology of mucosal immunoglobulins. 4th ed In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal Immunology. Amsterdam: Elsevier/Academic Press; (2015). p. 325–48.

Suzuki H, Suzuki Y, Novak J, Tomino Y. Development of animal models of human IgA nephropathy. Drug Discov Today Dis Models (2014) 11:5–11.10.1016/j.ddmod.2014.07.002 PubMed DOI PMC

Imai H, Nakamoto Y, Asakura K, Miki K, Yasuda T, Miura AB. Spontaneous glomerular IgA deposition in ddY mice: an animal model of IgA nephritis. Kidney Int (1985) 27:756–61.10.1038/ki.1985.76 PubMed DOI

Muso E, Yoshida H, Takeuchi E, Yashiro M, Matsushima H, Oyama A, et al. Enhanced production of glomerular extracellular matrix in a new mouse strain of high serum IgA ddY mice. Kidney Int (1996) 50:1946–57.10.1038/ki.1996.517 PubMed DOI

Suzuki H, Suzuki Y, Yamanaka T, Hirose S, Nishimura H, Toei J, et al. Genome-wide scan in a novel IgA nephropathy model identifies a susceptibility locus on murine chromosome 10, in a region syntenic to human IGAN1 on chromosome 6q22-23. J Am Soc Nephrol (2005) 16:1289–99.10.1681/ASN.2004030219 PubMed DOI

Okazaki K, Suzuki Y, Otsuji M, Suzuki H, Kihara M, Kajiyama T, et al. Development of a model of early-onset IgA nephropathy. J Am Soc Nephrol (2012) 23:1364–74.10.1681/ASN.2011121160 PubMed DOI PMC

Schroeder C, Osman AA, Roggenbuck D, Mothes T. IgA-gliadin antibodies, IgA-containing circulating immune complexes, and IgA glomerular deposits in wasting marmoset syndrome. Nephrol Dial Transplant (1999) 14:1875–80.10.1093/ndt/14.8.1875 PubMed DOI

Nishie T, Miyaishi O, Azuma H, Kameyama A, Naruse C, Hashimoto N, et al. Development of immunoglobulin A nephropathy-like disease in ß-1,4-galactosyltransferase-I-deficient mice. Am J Pathol (2007) 170:447–56.10.2353/ajpath.2007.060559 PubMed DOI PMC

Launay P, Grossetete B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease): evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med (2000) 191:1999–2009.10.1084/jem.191.11.1999 PubMed DOI PMC

Moldoveanu Z, Suzuki H, Satake K, Suzuki Y, Novak L, Huang ZQ, et al. IgA nephropathy: a murine model that displays typical IgAN pathology after passive administration of immune complexes. J Am Soc Nephrol (2012) 23:519A.

Novak L, Moldoveanu Z, Huang ZQ, Winstead CJ, Hall S, Brown R, et al. Assessment of glomerular changes in a passive mouse model of IgA nephropathy. J Am Soc Nephrol (2013) 24:570A.

Boyd JK, Barratt J. Immune complex formation in IgA nephropathy: CD89 a ‘saint’ or a ‘sinner’? Kidney Int (2010) 78:1211–3.10.1038/ki.2010.365 PubMed DOI

Vuong MT, Hahn-Zoric M, Lundberg S, Gunnarsson I, van Kooten C, Wramner L, et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int (2010) 78:1281–7.10.1038/ki.2010.314 PubMed DOI

Glassock RJ. The pathogenesis of IgA nephropathy. Curr Opin Nephrol Hypertens (2011) 20:153–60.10.1097/MNH.0b013e3283436f5c PubMed DOI

Lai KN. Pathogenesis of IgA nephropathy. Nat Rev Nephrol (2012) 8:275–83.10.1038/nrneph.2012.58 PubMed DOI

Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest (2014) 124:2325–32.10.1172/JCI74475 PubMed DOI PMC

Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol (2012) 23:1579–87.10.1681/ASN.2012010053 PubMed DOI PMC

Berthelot L, Robert T, Vuiblet V, Tabary T, Braconnier A, Drame M, et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int (2015) 88:815–22.10.1038/ki.2015.158 PubMed DOI

Julian BA, Quiggins PA, Thompson JS, Woodford SY, Gleason K, Wyatt RJ. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N Engl J Med (1985) 312:202–8.10.1056/NEJM198501243120403 PubMed DOI

Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med (2013) 64:339–56.10.1146/annurev-med-041811-142014 PubMed DOI PMC

Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol (2010) 21:1791–7.10.1681/ASN.2010010076 PubMed DOI PMC

Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet (2012) 44:178–82.10.1038/ng.1047 PubMed DOI

Li M, Foo JN, Wang JQ, Low HQ, Tang XQ, Toh KY, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun (2015) 6:7270.10.1038/ncomms8270 PubMed DOI PMC

Hastings MC, Moldoveanu Z, Suzuki H, Berthoux F, Julian BA, Sanders JT, et al. Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opin Med Diagn (2013) 7:615–27.10.1517/17530059.2013.856878 PubMed DOI PMC

Hewitt SM, Dear J, Star RA. Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol (2004) 15:1677–89.10.1097/01.ASN.0000129114.92265.32 PubMed DOI

Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol (2007) 18:1057–71.10.1681/ASN.2006090956 PubMed DOI

Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin Appl (2009) 3:1029–43.10.1002/prca.200800243 PubMed DOI PMC

Hrvacevic R, Topalov D, Stojanovic R, Lilic D, Dimitrijevic J, Maksic D, et al. [Serum and urinary interleukin-6 levels in patients with primary glomerulonephritis]. Srp Arh Celok Lek (1996) 124(Suppl 1):40–2. PubMed

Harada K, Akai Y, Kurumatani N, Iwano M, Saito Y. Prognostic value of urinary interleukin 6 in patients with IgA nephropathy: an 8-year follow-up study. Nephron (2002) 92:824–6.10.1159/000065465 PubMed DOI

Ranieri E, Gesualdo L, Petrarulo F, Schena FP. Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int (1996) 50:1990–2001.10.1038/ki.1996.521 PubMed DOI

Grandaliano G, Gesualdo L, Ranieri E, Monno R, Montinaro V, Marra F, et al. Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: a pathogenetic role in interstitial monocytes recruitment. J Am Soc Nephrol (1996) 7:906–13. PubMed

Huang F, Horikoshi S, Kurusu A, Shibata T, Suzuki S, Funabiki K, et al. Urinary levels of interleukin-8 (IL-8) and disease activity in patients with IgA nephropathy. J Clin Lab Anal (2001) 15:30–4.10.1002/1098-2825(2001)15:1<30::AID-JCLA6>3.0.CO;2-X PubMed DOI PMC

Machii R, Sakatume M, Kubota R, Kobayashi S, Gejyo F, Shiba K. Examination of the molecular diversity of α1 antitrypsin in urine: deficit of an α1 globulin fraction on cellulose acetate membrane electrophoresis. J Clin Lab Anal (2005) 19:16–21.10.1002/jcla.20049 PubMed DOI PMC

Mitsuhashi H, Tsukada Y, Ono K, Yano S, Naruse T. Urine glycosaminoglycans and heparan sulfate excretions in adult patients with glomerular diseases. Clin Nephrol (1993) 39:231–8. PubMed

Galla JH, Spotswood MF, Harrison LA, Mestecky J. Urinary IgA in IgA nephropathy and Henoch-Schönlein purpura. J Clin Immunol (1985) 5:298–306.10.1007/BF00918248 PubMed DOI

Matousovic K, Novak J, Yanagihara T, Tomana M, Moldoveanu Z, Kulhavy R, et al. IgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrol Dial Transplant (2006) 21:2478–84.10.1093/ndt/gfl240 PubMed DOI

Morita Y, Ikeguchi H, Nakamura J, Hotta N, Yuzawa Y, Matsuo S. Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol (2000) 11:700–7. PubMed

Kusunoki Y. [Terminal complement complex (TTC) levels in plasma and urine from glomerular diseases: enzyme-linked immunosorbent assay (ELISA) using monoclonal antibody against neoantigens of TCC]. Hokkaido Igaku Zasshi (1990) 65:74–85. PubMed

Halling SF, Soderberg MP, Berg UB. Henoch Schönlein nephritis: clinical findings related to renal function and morphology. Pediatr Nephrol (2005) 20:46–51.10.1007/s00467-004-1650-6 PubMed DOI

Good DM, Thongboonkerd V, Novak J, Bascands JL, Schanstra JP, Coon JJ, et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J Proteome Res (2007) 6:4549–55.10.1021/pr070529w PubMed DOI

Coon JJ, Zurbig P, Dakna M, Dominiczak AF, Decramer S, Fliser D, et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl (2008) 2:964.10.1002/prca.200800024 PubMed DOI PMC

Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B, Bascands JL, et al. Urine in clinical proteomics. Mol Cell Proteomics (2008) 7:1850–62.10.1074/mcp.R800001-MCP200 PubMed DOI

Julian BA, Suzuki H, Spasovski G, Suzuki Y, Tomino Y, Novak J. Application of proteomic analysis to renal disease in the clinic. Proteomics Clin Appl (2009) 3:1023–8.10.1002/prca.200800244 PubMed DOI PMC

Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev (2009) 28:703–24.10.1002/mas.20205 PubMed DOI PMC

Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics (2010) 9:2424–37.10.1074/mcp.M110.001917 PubMed DOI PMC

Mischak H, Allmaier G, Apweiler R, Attwood T, Baumann M, Benigni A, et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med (2010) 2:46s42.10.1126/scitranslmed.3001249 PubMed DOI

Mischak H, Ioannidis JP, Argiles A, Attwood TK, Bongcam-Rudloff E, Broenstrup M, et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest (2012) 42:1027–36.10.1111/j.1365-2362.2012.02674.x PubMed DOI PMC

Haubitz M, Wittke S, Weissinger EM, Walden M, Rupprecht HD, Floege J, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int (2005) 67:2313–20.10.1111/j.1523-1755.2005.00335.x PubMed DOI

Rossing K, Mischak H, Parving HH, Christensen PK, Walden M, Hillmann M, et al. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int (2005) 68:193–205.10.1111/j.1523-1755.2005.00394.x PubMed DOI

Decramer S, Wittke S, Mischak H, Zurbig P, Walden M, Bouissou F, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med (2006) 12:398–400.10.1038/nm1384 PubMed DOI

Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol (2006) 7:230–40.10.1016/S1470-2045(06)70584-8 PubMed DOI

Julian BA, Wittke S, Novak J, Good DM, Coon JJ, Kellmann M, et al. Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis (2007) 28:4469–83.10.1002/elps.200700237 PubMed DOI

Mischak H, Kolch W, Aivaliotis M, Bouyssie D, Court M, Dihazi H, et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl (2010) 4:464–78.10.1002/prca.200900189 PubMed DOI PMC

Novak J, Rizk DV, Takahashi K, Zhang XW, Bian Q, Ueda H, et al. New insights into the pathogenesis of IgA nephropathy. Kidney Dis (Basel) (2015) 1:8–18.10.1159/000382134 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

IgA nephropathy

. 2023 Nov 30 ; 9 (1) : 67. [epub] 20231130

Challenges in IgA Nephropathy Management: An Era of Complement Inhibition

. 2023 Sep ; 8 (9) : 1730-1740. [epub] 20230621

GalNAc-T14 may Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy

. 2023 May ; 8 (5) : 1068-1075. [epub] 20230213

IgA Nephropathy: Pleiotropic impact of Epstein-Barr virus infection on immunopathogenesis and racial incidence of the disease

. 2023 ; 14 () : 1085922. [epub] 20230207

New Treatment Strategies for IgA Nephropathy: Targeting Plasma Cells as the Main Source of Pathogenic Antibodies

. 2022 May 16 ; 11 (10) : . [epub] 20220516

Galactose-Deficient IgA1 B cells in the Circulation of IgA Nephropathy Patients Carry Preferentially Lambda Light Chains and Mucosal Homing Receptors

. 2022 May ; 33 (5) : 908-917. [epub] 20220203

Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases

. 2021 Jun 03 ; 31 (5) : 540-556.

Role of Epstein-Barr Virus in Pathogenesis and Racial Distribution of IgA Nephropathy

. 2020 ; 11 () : 267. [epub] 20200228

IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2

. 2019 Jul 01 ; 29 (7) : 543-556.

The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy

. 2019 ; 10 () : 504. [epub] 20190319

IgA nephropathy enigma

. 2016 Nov ; 172 () : 72-77. [epub] 20160718

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...