Arabidopsis Trichome Contains Two Plasma Membrane Domains with Different Lipid Compositions Which Attract Distinct EXO70 Subunits
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-12579S
Grantová Agentura České Republiky
NPUI LO1417
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/4.1.00/16.0347
European Regional Development Fund
PubMed
31382643
PubMed Central
PMC6695903
DOI
10.3390/ijms20153803
PII: ijms20153803
Knihovny.cz E-zdroje
- Klíčová slova
- EXO70, cell wall, exocyst complex, phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, phospholipids, plasma membrane domains, polar exocytosis, trichome,
- MeSH
- Arabidopsis chemie genetika MeSH
- buněčná membrána chemie genetika MeSH
- exocytóza genetika MeSH
- fosfatidylinositol-4,5-difosfát chemie metabolismus MeSH
- fosfatidylseriny chemie genetika MeSH
- membránové lipidy genetika metabolismus MeSH
- proteiny huseníčku chemie genetika MeSH
- trichomy chemie genetika MeSH
- vezikulární transportní proteiny chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- EXO70A1 protein, Arabidopsis MeSH Prohlížeč
- EXO70H4 protein, Arabidopsis MeSH Prohlížeč
- fosfatidylinositol-4,5-difosfát MeSH
- fosfatidylseriny MeSH
- membránové lipidy MeSH
- proteiny huseníčku MeSH
- vezikulární transportní proteiny MeSH
Plasma membrane (PM) lipid composition and domain organization are modulated by polarized exocytosis. Conversely, targeting of secretory vesicles at specific domains in the PM is carried out by exocyst complexes, which contain EXO70 subunits that play a significant role in the final recognition of the target membrane. As we have shown previously, a mature Arabidopsis trichome contains a basal domain with a thin cell wall and an apical domain with a thick secondary cell wall, which is developed in an EXO70H4-dependent manner. These domains are separated by a cell wall structure named the Ortmannian ring. Using phospholipid markers, we demonstrate that there are two distinct PM domains corresponding to these cell wall domains. The apical domain is enriched in phosphatidic acid (PA) and phosphatidylserine, with an undetectable amount of phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the basal domain is PIP2-rich. While the apical domain recruits EXO70H4, the basal domain recruits EXO70A1, which corresponds to the lipid-binding capacities of these two paralogs. Loss of EXO70H4 results in a loss of the Ortmannian ring border and decreased apical PA accumulation, which causes the PA and PIP2 domains to merge together. Using transmission electron microscopy, we describe these accumulations as a unique anatomical feature of the apical cell wall-radially distributed rod-shaped membranous pockets, where both EXO70H4 and lipid markers are immobilized.
Zobrazit více v PubMed
Szymanski D.B., Lloyd A.M., Marks M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 2000;5:214–219. doi: 10.1016/S1360-1385(00)01597-1. PubMed DOI
Hülskamp M. Plant trichomes: A model for cell differentiation. Nat. Rev. Mol. Cell Biol. 2004;5:471–480. doi: 10.1038/nrm1404. PubMed DOI
Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 2015;168:120–131. doi: 10.1104/pp.15.00112. PubMed DOI PMC
Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., Žárský V. Exocyst Subunit EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation. Plant Physiol. 2018;176:2040–2051. doi: 10.1104/pp.17.01693. PubMed DOI PMC
Hegebarth D., Buschhaus C., Joubès J., Thoraval D., Bird D., Jetter R. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C/C acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ. 2017;40:1761–1776. doi: 10.1111/pce.12981. PubMed DOI
TerBush D.R., Maurice T., Roth D., Novick P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996;15:6483–6494. doi: 10.1002/j.1460-2075.1996.tb01039.x. PubMed DOI PMC
Hsu S.-C., TerBush D., Abraham M., Guo W. The exocyst complex in polarized exocytosis. Int. Rev. Cytol. 2004;233:243–265. PubMed
Lepore D.M., Martínez-Núñez L., Munson M. Exposing the Elusive Exocyst Structure. Trends Biochem. Sci. 2018;43:714–725. doi: 10.1016/j.tibs.2018.06.012. PubMed DOI PMC
Liu J., Zuo X., Yue P., Guo W. Phosphatidylinositol 4,5-Bisphosphate Mediates the Targeting of the Exocyst to the Plasma Membrane for Exocytosis in Mammalian Cells. Mol. Biol. Cell. 2007;18:4483–4492. doi: 10.1091/mbc.e07-05-0461. PubMed DOI PMC
Zhang X., Orlando K., He B., Xi F., Zhang J., Zajac A., Guo W. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J. Cell Biol. 2008;180:145–158. doi: 10.1083/jcb.200704128. PubMed DOI PMC
Bendezú F.O., Vincenzetti V., Martin S.G. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles. PLoS ONE. 2012;7:e40248. doi: 10.1371/journal.pone.0040248. PubMed DOI PMC
Luo G., Zhang J., Guo W. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell. 2014;25:3813–3822. doi: 10.1091/mbc.e14-04-0907. PubMed DOI PMC
He B., Xi F., Zhang X., Zhang J., Guo W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 2007;26:4053–4065. doi: 10.1038/sj.emboj.7601834. PubMed DOI PMC
Yue P., Zhang Y., Mei K., Wang S., Lesigang J., Zhu Y., Dong G., Guo W. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun. 2017;8:14236. doi: 10.1038/ncomms14236. PubMed DOI PMC
Sekereš J., Pleskot R., Pejchar P., Žárský V., Potocký M. The song of lipids and proteins: Dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. J. Exp. Bot. 2015;66:1587–1598. doi: 10.1093/jxb/erv052. PubMed DOI
Elias M., Drdova E., Ziak D., Bavlnka B., Hala M., Cvrckova F., Soukupova H., Zarsky V. The exocyst complex in plants. Cell Biol. Int. 2003;27:199–201. doi: 10.1016/S1065-6995(02)00349-9. PubMed DOI
Synek L., Schlager N., Eliás M., Quentin M., Hauser M.-T., Zárský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006;48:54–72. doi: 10.1111/j.1365-313X.2006.02854.x. PubMed DOI PMC
Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., Zárský V. Evolution of the land plant exocyst complexes. Front. Plant Sci. 2012;3:159. doi: 10.3389/fpls.2012.00159. PubMed DOI PMC
Zárský V., Cvrcková F., Potocký M., Hála M. Exocytosis and cell polarity in plants–exocyst and recycling domains. New Phytol. 2009;183:255–272. doi: 10.1111/j.1469-8137.2009.02880.x. PubMed DOI
Sekereš J., Pejchar P., Šantrůček J., Vukašinović N., Žárský V., Potocký M. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. Plant Physiol. 2017;173:1659–1675. doi: 10.1104/pp.16.01709. PubMed DOI PMC
Simon M.L.A., Platre M.P., Assil S., van Wijk R., Chen W.Y., Chory J., Dreux M., Munnik T., Jaillais Y. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 2014;77:322–337. doi: 10.1111/tpj.12358. PubMed DOI PMC
Potocký M., Pleskot R., Pejchar P., Vitale N., Kost B., Zárský V. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 2014;203:483–494. doi: 10.1111/nph.12814. PubMed DOI
Platre M.P., Noack L.C., Doumane M., Bayle V., Simon M.L.A., Maneta-Peyret L., Fouillen L., Stanislas T., Armengot L., Pejchar P., et al. A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Dev. Cell. 2018;45:465–480. doi: 10.1016/j.devcel.2018.04.011. PubMed DOI
Wu C., Tan L., van Hooren M., Tan X., Liu F., Li Y., Zhao Y., Li B., Rui Q., Munnik T., et al. Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit. J. Integr. Plant Biol. 2017;59:851–865. doi: 10.1111/jipb.12578. PubMed DOI
Zhang X., Oppenheimer D.G. A simple and efficient method for isolating trichomes for downstream analyses. Plant Cell Physiol. 2004;45:221–224. doi: 10.1093/pcp/pch016. PubMed DOI
Lee B.H., Weber Z.T., Zourelidou M., Hofmeister B.T., Schmitz R.J., Schwechheimer C., Dobritsa A.A. Arabidopsis Protein Kinase D6PKL3 Is Involved in the Formation of Distinct Plasma Membrane Aperture Domains on the Pollen Surface. Plant Cell. 2018;30:2038–2056. doi: 10.1105/tpc.18.00442. PubMed DOI PMC
Ferguson C., Teeri T.T., Siika-aho M., Read S.M., Bacic A. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta. 1998;206:452–460. doi: 10.1007/s004250050421. DOI
Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell. 2009;21:2357–2377. doi: 10.1105/tpc.108.062992. PubMed DOI PMC
Sang Y., Cui D., Wang X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 2001;126:1449–1458. doi: 10.1104/pp.126.4.1449. PubMed DOI PMC
Torres M.A., Dangl J.L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 2005;8:397–403. doi: 10.1016/j.pbi.2005.05.014. PubMed DOI
Torres M.A., Dangl J.L., Jones J.D.G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA. 2002;99:517–522. doi: 10.1073/pnas.012452499. PubMed DOI PMC
Testerink C., Munnik T. Phosphatidic acid: A multifunctional stress signaling lipid in plants. Trends Plant Sci. 2005;10:368–375. doi: 10.1016/j.tplants.2005.06.002. PubMed DOI
Bélanger R.R. The Powdery Mildews: A Comprehensive Treatise. Amer Phytopathological Society; Amer, India: 2002.
Assaad F.F., Qiu J.-L., Youngs H., Ehrhardt D., Zimmerli L., Kalde M., Wanner G., Peck S.C., Edwards H., Ramonell K., et al. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell. 2004;15:5118–5129. doi: 10.1091/mbc.e04-02-0140. PubMed DOI PMC
Putta P., Rankenberg J., Korver R.A., van Wijk R., Munnik T., Testerink C., Kooijman E.E. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim. Biophys. Acta. 2016;1858:2709–2716. doi: 10.1016/j.bbamem.2016.07.014. PubMed DOI
Zhao Y., Liu J., Yang C., Capraro B.R., Baumgart T., Bradley R.P., Ramakrishnan N., Xu X., Radhakrishnan R., Svitkina T., et al. Exo70 generates membrane curvature for morphogenesis and cell migration. Dev. Cell. 2013;26:266–278. doi: 10.1016/j.devcel.2013.07.007. PubMed DOI PMC
Marks M.D., Gilding E., Wenger J.P. Genetic interaction between glabra3-shapeshifter and siamese in Arabidopsis thaliana converts trichome precursors into cells with meristematic activity. Plant J. 2007;52:352–361. doi: 10.1111/j.1365-313X.2007.03243.x. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Karimi M., Bleys A., Vanderhaeghen R., Hilson P. Building blocks for plant gene assembly. Plant Physiol. 2007;145:1183–1191. doi: 10.1104/pp.107.110411. PubMed DOI PMC
Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Exploring lipid-protein interactions in plant membranes
DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis
Plant extracellular vesicles and their potential in human health research, the practical approach
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells
EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development
Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2