Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31426567

Grantová podpora
LO1305 Ministry of Education of the Czech Republic
APVV-17-0373 Slovak Research and Development Agency
APVV-17-0318 Slovak Research and Development Agency
VEGA 1/0040/17 Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic
314/2019FAF IGA VFU Brno
2018/31/B/NZ7/02122 Polish National Science Center
TH04020540 Technology Agency of the Czech Republic

A series of twenty-six methoxylated and methylated N-aryl-1-hydroxynaphthalene- 2-carboxanilides was prepared and characterized as potential anti-invasive agents. The molecular structure of N-(2,5-dimethylphenyl)-1-hydroxynaphthalene-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. All the analysed compounds were tested against the reference strain Staphylococcus aureus and three clinical isolates of methicillin-resistant S. aureus as well as against Mycobacterium tuberculosis and M. kansasii. In addition, the inhibitory profile of photosynthetic electron transport in spinach (Spinacia oleracea L.) chloroplasts was specified. In vitro cytotoxicity of the most effective compounds was tested on the human monocytic leukaemia THP-1 cell line. The activities of N-(3,5-dimethylphenyl)-, N-(3-fluoro-5-methoxy-phenyl)- and N-(3,5-dimethoxyphenyl)-1-hydroxynaphthalene-2-carbox- amide were comparable with or even better than the commonly used standards ampicillin and isoniazid. All promising compounds did not show any cytotoxic effect at the concentration >30 µM. Moreover, an in silico evaluation of clogP features was performed for the entire set of the carboxamides using a range of software lipophilicity predictors, and cross-comparison with the experimentally determined lipophilicity (log k), in consensus lipophilicity estimation, was conducted as well. Principal component analysis was employed to illustrate noticeable variations with respect to the molecular lipophilicity (theoretical/experimental) and rule-of-five violations. Additionally, ligand-oriented studies for the assessment of the three-dimensional quantitative structure-activity relationship profile were carried out with the comparative molecular surface analysis to determine electron and/or steric factors that potentially contribute to the biological activities of the investigated compounds.

Zobrazit více v PubMed

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC

Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O’Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI

Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC

Gonec T., Pospisilova S., Holanova L., Stranik J., Cernikova A., Pudelkova V., Kos J., Oravec M., Kollar P., Cizek A., et al. Synthesis and antimicrobial evaluation of 1-[(2-substituted phenyl)carbamoyl]naphthalen-2-yl carbamates. Molecules. 2016;21:1189. doi: 10.3390/molecules21091189. PubMed DOI PMC

Kos J., Kapustikova I., Clements C., Gray A.I., Jampilek J. 3-Hydroxynaphthalene- 2-carboxanilides and their antitrypanosomal activity. Monatsh. Chem. 2018;149:887–892. doi: 10.1007/s00706-017-2099-1. DOI

Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC

Spaczynska E., Mrozek-Wilczkiewicz A., Malarz K., Kos J., Gonec T., Oravec M., Gawecki R., Bak A., Dohanosova J., Kapustikova I., et al. Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Sci. Rep. 2019;9:6387. doi: 10.1038/s41598-019-42595-y. PubMed DOI PMC

Miro-Canturri A., Ayerbe-Algaba R., Smani Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol. 2019;10:41. doi: 10.3389/fmicb.2019.00041. PubMed DOI PMC

Fonseca B.D., Diering G.H., Bidinosti M.A., Dalal K., Alain T., Balgi A.D., Forestieri R., Nodwell M., Rajadurai C.V., Gunaratnam C., et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 2012;287:17530–17545. doi: 10.1074/jbc.M112.359638. PubMed DOI PMC

Imperi F., Massai F., Ramachandran Pillai C., Longo F., Zennaro E., Rampioni G., Visca P., Leoni L. New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob. Agents Chemother. 2013;57:996–1005. doi: 10.1128/AAC.01952-12. PubMed DOI PMC

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy- N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]- benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Walters W.P., Green J., Weiss J.R., Murcko M.A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 2011;54:6405–6416. doi: 10.1021/jm200504p. PubMed DOI

Polanski J., Gasteiger J. Computer representation of chemical compounds. In: Leszczynski J., Kaczmarek-Kedziera A., Puzyn T., Papadopoulos M., Reis H., Shukla M., editors. Handbook of Computational Chemistry. Springer; Cham, Germany: 2017.

Todeschini R., Consonni V. Handbook of Molecular Descriptors. Wiley-VCH Verlag; Weinheim, Germany: 2000.

Martel S., Gillerat F., Carosati E., Maiarelli D., Tetko I.V., Mannhold R., Carrupt P.-A. Large, chemically diverse dataset of logP measurements for benchmarking studies. Eur. J. Pharm. Sci. 2013;48:21–29. doi: 10.1016/j.ejps.2012.10.019. PubMed DOI

Polanski J., Tkocz A. Between descriptors and properties: Understanding the ligand efficiency trends for G protein-coupled receptor and kinase structure–activity data sets. J. Chem. Inf. Model. 2017;57:1321–1329. doi: 10.1021/acs.jcim.7b00116. PubMed DOI

Bak A., Kozik V., Smolinski A., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI

Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis—Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Pesko M., Kos J., Kralova K., Jampilek J. Inhibition of photosynthetic electron transport by 6-hydroxynaphthalene-2-carboxanilides. Indian J. Chem. B. 2015;54:1511–1517.

Jampilek J., Kralova K., Pesko M., Kos J. Ring-substituted 8-hydroxyquinoline- 2-carboxanilides as photosystem II inhibitors. Bioorg. Med. Chem. Lett. 2016;26:3862–3865. doi: 10.1016/j.bmcl.2016.07.021. PubMed DOI

Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-alkoxyphenylhydroxy- naphthalenecarboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI

Bowyer J.R., Camilleri P., Vermaas W.F.J. In: Herbicides, Topics in Photosynthesis. Baker N.R., Percival M.P., editors. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. Int. Ed. 1991;30:1621–1633. doi: 10.1002/anie.199116211. DOI

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., et al. Investigating spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Gonec T., Kos J., Pesko M., Dohanosova J., Oravec M., Liptaj T., Kralova K., Jampilek J. Halogenated 1-hydroxynaphthalene-2-carboxanilides affecting photosynthetic electron transport in photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC

Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge structural database. Acta Cryst. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Hann M.M., Oprea T.I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 2004;8:255–263. doi: 10.1016/j.cbpa.2004.04.003. PubMed DOI

Heinrichs M., May R., Heider F., Reimers T., Sy S.B., Peloquin C., Derendorf H. Mycobacterium tuberculosis Strains H37Ra and H37Rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI

Honda J.R., Virdi R., Chan E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018;9:2029. doi: 10.3389/fmicb.2018.02029. PubMed DOI PMC

Measuring Cell Viability/Cytotoxicity Dojindo EU GmbH, Munich, Germany. [(accessed on 18 June 2019)]; Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.

Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI

Bueno J. Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. IntechOpen; Rijeka, Croatia: 2012. Antitubercular in vitro drug discovery: Tools for begin the search; pp. 147–168.

Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI

Shultz M.D. Setting expectations in molecular optimizations: Strengths and limitations of commonly used composite parameters. Bioorg. Med. Chem. Lett. 2013;23:5980–5991. doi: 10.1016/j.bmcl.2013.08.029. PubMed DOI

De Marco R., Bedini A., Spampinato S., Gentilucci L. Synthesis of tripeptides containing d -trp substituted at the indole ring, assessment of opioid receptor binding and in vivo central antinociception. J. Med. Chem. 2014;57:6861–6866. doi: 10.1021/jm5002925. PubMed DOI

Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollár P., Coffey A., Csollei J., Kralova K., et al. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI

Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI

Golbraikh A., Tropsha A. Beware of q2! J. Mol. Graph. Mod. 2002;20:269–276. doi: 10.1016/S1093-3263(01)00123-1. PubMed DOI

Kubinyi H. Hansch Analysis and Related Approaches. Wiley-VCH Verlag GmbH; Weinheim, Germany: 1993.

Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI

Kapustikova I., Gonec T., Kos J., Spaczynska E., Oravec M., Dohanosova J., Liptaj T., Musiol R., Jampilek J. Preparation and hydro-lipophilic properties of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides; Proceedings of the 22nd International Electronic Conference on Synthetic Organic Chemistry (ECSOC-22); 15 November–15 December 2018; Basel, Switzerland: MDPI; 2019. p. 43. DOI

Bruker . Apex3. Bruker AXS Inc.; Madison, WI, USA: 2015.

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Brandenburg K. Diamond Version 4.5.3. Crystal Impact GbR; Bonn, Germany: 2018.

Abate G., Mshana R.N., Miörner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:1011–1016. PubMed

Polanski J., Gieleciak R., Magdziarz T., Bak A. GRID formalism for the comparative molecular surface analysis: Application to the CoMFA benchmark steroids, azo dyes, and HEPT derivatives. J. Chem. Inf. Comput. Sci. 2004;44:1423–1435. doi: 10.1021/ci049960l. PubMed DOI

Gieleciak R., Magdziarz T., Bak A., Polanski J. Modeling robust QSAR. 1. Coding molecules in 3D-QSAR—From a point to surface sectors and molecular volumes. J. Chem. Inf. Model. 2005;45:1447–1455. doi: 10.1021/ci0501488. PubMed DOI

Smolinski A., Drobek L., Dombek V., Bąk A. Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps. Chemosphere. 2016;162:189–198. doi: 10.1016/j.chemosphere.2016.07.086. PubMed DOI

Stanton D.T. QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr. Comput. Drug Des. 2012;8:107–127. doi: 10.2174/157340912800492357. PubMed DOI

Bak A., Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI

Centner V., Massart D.-L., De Noord O.E., De Jong S., Vandeginste B.M., Sterna C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996;68:3851–3858. doi: 10.1021/ac960321m. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

Chemistry towards Biology-Instruct: Snapshot

. 2022 Nov 26 ; 23 (23) : . [epub] 20221126

Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates

. 2022 Jun 05 ; 15 (6) : . [epub] 20220605

Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides

. 2020 Sep 09 ; 25 (18) : . [epub] 20200909

Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides

. 2020 Sep 09 ; 21 (18) : . [epub] 20200909

Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives

. 2019 Dec 11 ; 24 (24) : . [epub] 20191211

SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors

. 2019 Oct 29 ; 20 (21) : . [epub] 20191029

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...