Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31822744
PubMed Central
PMC6904477
DOI
10.1038/s41598-019-55210-x
PII: 10.1038/s41598-019-55210-x
Knihovny.cz E-zdroje
- MeSH
- Alphaproteobacteria izolace a purifikace fyziologie účinky záření MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Betaproteobacteria izolace a purifikace fyziologie účinky záření MeSH
- DNA bakterií genetika izolace a purifikace MeSH
- fotoperioda * MeSH
- fotosyntetická reakční centra (proteinové komplexy) genetika metabolismus MeSH
- fototrofní procesy genetika účinky záření MeSH
- fylogeneze MeSH
- jezera mikrobiologie MeSH
- mikrobiota fyziologie účinky záření MeSH
- regulace genové exprese u bakterií fyziologie účinky záření MeSH
- světlo škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
- fotosyntetická reakční centra (proteinové komplexy) MeSH
- PufM protein, Bacteria MeSH Prohlížeč
The anoxygenic phototrophic bacteria (APB) are an active component of aquatic microbial communities. While DNA-based studies have delivered a detailed picture of APB diversity, they cannot provide any information on the activity of individual species. Therefore, we focused on the expression of a photosynthetic gene by APB communities in two freshwater lakes (Cep lake and the Římov Reservoir) in the Czech Republic. First, we analyzed expression levels of pufM during the diel cycle using RT-qPCR. The transcription underwent a strong diel cycle and was inhibited during the day in both lakes. Then, we compared DNA- (total) and RNA-based (active) community composition by sequencing pufM amplicon libraries. We observed large differences in expression activity among different APB phylogroups. While the total APB community in the Římov Reservoir was dominated by Betaproteobacteria, Alphaproteobacteria prevailed in the active library. A different situation was encountered in the oligotrophic lake Cep where Betaproteobacteria (order Burkholderiales) dominated both the DNA and RNA libraries. Interestingly, in Cep lake we found smaller amounts of highly active uncultured phototrophic Chloroflexi, as well as phototrophic Gemmatimonadetes. Despite the large diversity of APB communities, light repression of pufM expression seems to be a common feature of all aerobic APB present in the studied lakes.
Zobrazit více v PubMed
Blankenship, R. E. Molecular Mechanisms of Photosynthesis. 2nd edn. (Blackwell Science Ltd, 2002).
Cardona A. A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth. Res. 2015;126:111–134. doi: 10.1007/s11120-014-0065-x. PubMed DOI PMC
Thiel V, Tank M, Bryant D. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu. Rev. Plant. Biol. 2018;69:21–49. doi: 10.1146/annurev-arplant-042817-040500. PubMed DOI
Holland-Moritz H, et al. Novel bacterial lineages associated with boreal moss species. Environ. Microbiol. 2018;20:625–638. doi: 10.1111/1462-2920.14288. PubMed DOI
Gest H, Blankenship RE. Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth. Res. 2005;80:59–70. doi: 10.1023/B:PRES.0000030448.24695.ec. PubMed DOI
Bauer, C. E., Setterdahl, A., Wu, J., Robinson, B. R. Regulation of Gene Expression in Response to Oxygen Tension. (ed, Hunter, C. N., Daldal, F., Thurnauer, M. C. & Beaty, J. T.). The purple phototrophic bacteria. Advances in Photosynthesis and Respiration. 28, 707–725 (Springer, 2009)
Pierson BK, Castenholz RW. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 1974;100:5–24. doi: 10.1007/BF00446302. PubMed DOI
Shiba T, Simidu U, Taga N. Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl. Environ. Microbiol. 1979;38:43–45. PubMed PMC
Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 1998;62:695–724. PubMed PMC
Kolber ZS, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–2495. doi: 10.1126/science.1059707. PubMed DOI
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol. Rev. 2015;39:854–870. doi: 10.1093/femsre/fuv032. PubMed DOI
Mašín M, Nedoma J, Pechar L, Koblížek M. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 2008;10:1988–1996. doi: 10.1111/j.1462-2920.2008.01615.x. PubMed DOI
Mašín M, et al. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes in northern Europe. Aquat. Microb. Ecol. 2012;66:77–86. doi: 10.3354/ame01558. DOI
Fauteux L, et al. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One. 2015;10:e0124035. doi: 10.1371/journal.pone.0124035. PubMed DOI PMC
Oz A, Sabehi G, Koblížek M, Massana R, Béjà O. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenicp photosynthetic populations. Appl. Environ. Microbiol. 2005;71:344–353. doi: 10.1128/AEM.71.1.344-353.2005. PubMed DOI PMC
Huang Y, et al. Novel acsF gene primers revealed a diverse phototrophic bacterial population, including Gemmatimonadetes, in Lake Taihu (China) Appl. Environ. Microbiol. 2016;82:5587–5594. doi: 10.1128/AEM.01063-16. PubMed DOI PMC
Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front. Microbiol. 2016;7:2026. doi: 10.3389/fmicb.2016.02026. PubMed DOI PMC
Achenbach LA, Carey J, Madigan MT. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl. Environ. Microb. 2001;67:2922–2936. doi: 10.1128/AEM.67.7.2922-2926.2001. PubMed DOI PMC
Yutin N, Suzuki MT, Béjà O. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl. Environ. Microb. 2005;71:8958–8962. doi: 10.1128/AEM.71.12.8958-8962.2005. PubMed DOI PMC
Béjà O, et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature. 2002;415:630–633. doi: 10.1038/415630a. PubMed DOI
Jiao N, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 2007;9:3091–3099. doi: 10.1111/j.1462-2920.2007.01419.x. PubMed DOI
Waidner LA, Kirchman DL. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl. Environ. Microb. 2008;74:4012–4021. doi: 10.1128/AEM.02324-07. PubMed DOI PMC
Tank M, Blümel M, Imhoff JF. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol. Ecol. 2011;78:428–438. doi: 10.1111/j.1574-6941.2011.01175.x. PubMed DOI
Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbachm LA. Remarkable diversity of phototrophic purple bacteria in a permanently frozen antarctic lake. Appl. Environ. Microbiol. 2003;69:4910–4914. doi: 10.1128/AEM.69.8.4910-4914.2003. PubMed DOI PMC
Jiang H, et al. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol. Ecol. 2009;67:268–278. doi: 10.1111/j.1574-6941.2008.00616.x. PubMed DOI
Salka I, Čuperová Z, Mašín M, Koblížek M, Grossart HP. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ. Microbiol. 2011;13:2865–2875. doi: 10.1111/j.1462-2920.2011.02562.x. PubMed DOI
Ferrera I, et al. Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front. Microbiol. 2017;8:175. doi: 10.3389/fmicb.2017.00175. PubMed DOI PMC
Zheng Q, Liu Y, Steindler L, Jiao N. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean. FEMS Microbiol. Lett. 2015;362:fnv034. doi: 10.1093/femsle/fnv034. PubMed DOI
Bibiloni-Isaksson J, et al. Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia. Environ. Microbiol. 2016;18:4485–4500. doi: 10.1111/1462-2920.13436. PubMed DOI
Kasalický V, et al. Common presence of aerobic anoxygenic photosynthesis within the genus. Limnohabitans. Appl. Environ. Microbiol. 2018;84:e02116–02117. PubMed PMC
Frias-Lopez J, et al. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. USA. 2008;105:3805–3810. doi: 10.1073/pnas.0708897105. PubMed DOI PMC
Sieradzki ET, Fuhrman JA, Rivero-Calle S, Gómez-Consarnau L. Proteorhodopsins dominate the expression of phototrophic mechanisms in seasonal and dynamic marine picoplankton communities. Peer J. 2018;6:e5798. doi: 10.7717/peerj.5798. PubMed DOI PMC
Vila-Costa M, Sharma S, Moran MA, Casamayor EO. Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ. Microbiol. 2013;15:1190–1203. doi: 10.1111/1462-2920.12033. PubMed DOI
Koblížek M, Stoń-Egiert J, Sagan S, Kolber ZS. Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea. FEMS Microbiol. Ecol. 2005;51:353–361. doi: 10.1016/j.femsec.2004.09.016. PubMed DOI
Cepáková Z, et al. High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environ. Microbiol. 2016;18:5063–5071. doi: 10.1111/1462-2920.13475. PubMed DOI
Tomasch J, Gohl R, Bunk B, Suarez Diez M, Wagner-Döbler I. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J. 2011;5:1957–1968. doi: 10.1038/ismej.2011.68. PubMed DOI PMC
Mehrshad M, et al. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome. 2018;6:176. doi: 10.1186/s40168-018-0563-8. PubMed DOI PMC
Iba K, Takamiya K. Action spectra for light-inhibition of bacteriochlorophyll and carotenoid accumulation during aerobic growth of photosynthetic bacteria. Plant Cell Physiol. 1989;30:471–477. doi: 10.1093/oxfordjournals.pcp.a077765. DOI
Yurkov VV, van Gemerden H. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 1993;159:84–89. doi: 10.1007/BF00244268. DOI
Nishimura K, et al. Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans. Plant Cell Physiol. 1996;37:153–159. doi: 10.1093/oxfordjournals.pcp.a028926. PubMed DOI
Selyanin V, Hauruseu D, Koblížek M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth. Res. 2016;128:35–43. doi: 10.1007/s11120-015-0197-7. PubMed DOI
Klug, G. & Masuda, S. Regulation of Genes by Light. (ed, Hunter, C. N., Daldal, F., Thurnauer, M. C. & Beaty, J. T.). The purple phototrophic bacteria. Advances in Photosynthesis and Respiration. 28, 727–741 (Springer, 2009).
Linz, A. M., Aylward, F. O., Bertilsson, S. & McMahon, K. D. Time-series metatranscriptomes reveal conserved patterns between phototrophic and heterotrophic microbes in diverse freshwater systems. Limnol. Oceanogr. 10.1002/lno.11306 (2019).
Waidner LA, Kirchman DL. Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ. Microbiol. 2005;7:1896–1908. doi: 10.1111/j.1462-2920.2005.00883.x. PubMed DOI
Čuperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl. Environ. Microb. 2013;79:6439–6446. doi: 10.1128/AEM.01526-13. PubMed DOI PMC
Šimek K, et al. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl. Environ. Microbiol. 2010;76:631–639. doi: 10.1128/AEM.02203-09. PubMed DOI PMC
Shabarova T, et al. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ. Microbiol. 2017;19:1296–1309. doi: 10.1111/1462-2920.13663. PubMed DOI
Zeng Y, Kasalický V, Šimek K, Koblížek M. Genome sequences of two freshwater betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J. Bacteriol. 2012;194:6302–6303. doi: 10.1128/JB.01481-12. PubMed DOI PMC
Hanada S, Takaichi S, Matsuura K, Nakamura K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int. J. Syst. Evol. Micr. 2002;52:187–193. doi: 10.1099/00207713-52-1-187. PubMed DOI
van der Meer MT, et al. Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J. Bacteriol. 2010;192:3033–3042. doi: 10.1128/JB.01610-09. PubMed DOI PMC
Zeng Y, et al. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ. Microbiol. Rep. 2016;8:139–149. doi: 10.1111/1758-2229.12363. PubMed DOI
Delgado-Baquerizo M, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–325. doi: 10.1126/science.aap9516. PubMed DOI
Piwosz K, et al. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS) ISME J. 2018;12:2640–2654. doi: 10.1038/s41396-018-0213-y. PubMed DOI PMC
Kopejtka K. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes. Extremophiles. 2018;22:839–849. doi: 10.1007/s00792-018-1041-8. PubMed DOI
Znachor P, et al. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. Sci. Total Environ. 2018;24:24–33. doi: 10.1016/j.scitotenv.2017.12.061. PubMed DOI
Beutler M, et al. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res. 2002;72:39–53. doi: 10.1023/A:1016026607048. PubMed DOI
Coleman AW. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol Oceanogr. 1981;25:948–951. doi: 10.4319/lo.1980.25.5.0948. DOI
Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 2005;71:6885–6899. doi: 10.1128/AEM.71.11.6885-6899.2005. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Fish JA, et al. FunGene: the Functional Gene Pipeline and Repository. Front. Microbiol. 2013;4:291. doi: 10.3389/fmicb.2013.00291. PubMed DOI PMC
Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Zeng YH, Chen XH, Jiao NZ. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett. Appl. Microbiol. 2007;45:639–645. doi: 10.1111/j.1472-765X.2007.02247.x. PubMed DOI
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ. Microbiol. 2014;16:2953–2965. doi: 10.1111/1462-2920.12278. PubMed DOI
Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–20. doi: 10.1093/molbev/msn067. PubMed DOI
Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake
Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake
Phylum Gemmatimonadota and Its Role in the Environment
Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5
Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes