Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria

. 2019 Dec 10 ; 9 (1) : 18766. [epub] 20191210

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31822744
Odkazy

PubMed 31822744
PubMed Central PMC6904477
DOI 10.1038/s41598-019-55210-x
PII: 10.1038/s41598-019-55210-x
Knihovny.cz E-zdroje

The anoxygenic phototrophic bacteria (APB) are an active component of aquatic microbial communities. While DNA-based studies have delivered a detailed picture of APB diversity, they cannot provide any information on the activity of individual species. Therefore, we focused on the expression of a photosynthetic gene by APB communities in two freshwater lakes (Cep lake and the Římov Reservoir) in the Czech Republic. First, we analyzed expression levels of pufM during the diel cycle using RT-qPCR. The transcription underwent a strong diel cycle and was inhibited during the day in both lakes. Then, we compared DNA- (total) and RNA-based (active) community composition by sequencing pufM amplicon libraries. We observed large differences in expression activity among different APB phylogroups. While the total APB community in the Římov Reservoir was dominated by Betaproteobacteria, Alphaproteobacteria prevailed in the active library. A different situation was encountered in the oligotrophic lake Cep where Betaproteobacteria (order Burkholderiales) dominated both the DNA and RNA libraries. Interestingly, in Cep lake we found smaller amounts of highly active uncultured phototrophic Chloroflexi, as well as phototrophic Gemmatimonadetes. Despite the large diversity of APB communities, light repression of pufM expression seems to be a common feature of all aerobic APB present in the studied lakes.

Zobrazit více v PubMed

Blankenship, R. E. Molecular Mechanisms of Photosynthesis. 2nd edn. (Blackwell Science Ltd, 2002).

Cardona A. A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth. Res. 2015;126:111–134. doi: 10.1007/s11120-014-0065-x. PubMed DOI PMC

Thiel V, Tank M, Bryant D. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu. Rev. Plant. Biol. 2018;69:21–49. doi: 10.1146/annurev-arplant-042817-040500. PubMed DOI

Holland-Moritz H, et al. Novel bacterial lineages associated with boreal moss species. Environ. Microbiol. 2018;20:625–638. doi: 10.1111/1462-2920.14288. PubMed DOI

Gest H, Blankenship RE. Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth. Res. 2005;80:59–70. doi: 10.1023/B:PRES.0000030448.24695.ec. PubMed DOI

Bauer, C. E., Setterdahl, A., Wu, J., Robinson, B. R. Regulation of Gene Expression in Response to Oxygen Tension. (ed, Hunter, C. N., Daldal, F., Thurnauer, M. C. & Beaty, J. T.). The purple phototrophic bacteria. Advances in Photosynthesis and Respiration. 28, 707–725 (Springer, 2009)

Pierson BK, Castenholz RW. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 1974;100:5–24. doi: 10.1007/BF00446302. PubMed DOI

Shiba T, Simidu U, Taga N. Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl. Environ. Microbiol. 1979;38:43–45. PubMed PMC

Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 1998;62:695–724. PubMed PMC

Kolber ZS, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–2495. doi: 10.1126/science.1059707. PubMed DOI

Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol. Rev. 2015;39:854–870. doi: 10.1093/femsre/fuv032. PubMed DOI

Mašín M, Nedoma J, Pechar L, Koblížek M. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 2008;10:1988–1996. doi: 10.1111/j.1462-2920.2008.01615.x. PubMed DOI

Mašín M, et al. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes in northern Europe. Aquat. Microb. Ecol. 2012;66:77–86. doi: 10.3354/ame01558. DOI

Fauteux L, et al. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One. 2015;10:e0124035. doi: 10.1371/journal.pone.0124035. PubMed DOI PMC

Oz A, Sabehi G, Koblížek M, Massana R, Béjà O. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenicp photosynthetic populations. Appl. Environ. Microbiol. 2005;71:344–353. doi: 10.1128/AEM.71.1.344-353.2005. PubMed DOI PMC

Huang Y, et al. Novel acsF gene primers revealed a diverse phototrophic bacterial population, including Gemmatimonadetes, in Lake Taihu (China) Appl. Environ. Microbiol. 2016;82:5587–5594. doi: 10.1128/AEM.01063-16. PubMed DOI PMC

Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front. Microbiol. 2016;7:2026. doi: 10.3389/fmicb.2016.02026. PubMed DOI PMC

Achenbach LA, Carey J, Madigan MT. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl. Environ. Microb. 2001;67:2922–2936. doi: 10.1128/AEM.67.7.2922-2926.2001. PubMed DOI PMC

Yutin N, Suzuki MT, Béjà O. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl. Environ. Microb. 2005;71:8958–8962. doi: 10.1128/AEM.71.12.8958-8962.2005. PubMed DOI PMC

Béjà O, et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature. 2002;415:630–633. doi: 10.1038/415630a. PubMed DOI

Jiao N, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 2007;9:3091–3099. doi: 10.1111/j.1462-2920.2007.01419.x. PubMed DOI

Waidner LA, Kirchman DL. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl. Environ. Microb. 2008;74:4012–4021. doi: 10.1128/AEM.02324-07. PubMed DOI PMC

Tank M, Blümel M, Imhoff JF. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol. Ecol. 2011;78:428–438. doi: 10.1111/j.1574-6941.2011.01175.x. PubMed DOI

Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbachm LA. Remarkable diversity of phototrophic purple bacteria in a permanently frozen antarctic lake. Appl. Environ. Microbiol. 2003;69:4910–4914. doi: 10.1128/AEM.69.8.4910-4914.2003. PubMed DOI PMC

Jiang H, et al. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol. Ecol. 2009;67:268–278. doi: 10.1111/j.1574-6941.2008.00616.x. PubMed DOI

Salka I, Čuperová Z, Mašín M, Koblížek M, Grossart HP. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ. Microbiol. 2011;13:2865–2875. doi: 10.1111/j.1462-2920.2011.02562.x. PubMed DOI

Ferrera I, et al. Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front. Microbiol. 2017;8:175. doi: 10.3389/fmicb.2017.00175. PubMed DOI PMC

Zheng Q, Liu Y, Steindler L, Jiao N. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean. FEMS Microbiol. Lett. 2015;362:fnv034. doi: 10.1093/femsle/fnv034. PubMed DOI

Bibiloni-Isaksson J, et al. Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia. Environ. Microbiol. 2016;18:4485–4500. doi: 10.1111/1462-2920.13436. PubMed DOI

Kasalický V, et al. Common presence of aerobic anoxygenic photosynthesis within the genus. Limnohabitans. Appl. Environ. Microbiol. 2018;84:e02116–02117. PubMed PMC

Frias-Lopez J, et al. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. USA. 2008;105:3805–3810. doi: 10.1073/pnas.0708897105. PubMed DOI PMC

Sieradzki ET, Fuhrman JA, Rivero-Calle S, Gómez-Consarnau L. Proteorhodopsins dominate the expression of phototrophic mechanisms in seasonal and dynamic marine picoplankton communities. Peer J. 2018;6:e5798. doi: 10.7717/peerj.5798. PubMed DOI PMC

Vila-Costa M, Sharma S, Moran MA, Casamayor EO. Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ. Microbiol. 2013;15:1190–1203. doi: 10.1111/1462-2920.12033. PubMed DOI

Koblížek M, Stoń-Egiert J, Sagan S, Kolber ZS. Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea. FEMS Microbiol. Ecol. 2005;51:353–361. doi: 10.1016/j.femsec.2004.09.016. PubMed DOI

Cepáková Z, et al. High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environ. Microbiol. 2016;18:5063–5071. doi: 10.1111/1462-2920.13475. PubMed DOI

Tomasch J, Gohl R, Bunk B, Suarez Diez M, Wagner-Döbler I. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J. 2011;5:1957–1968. doi: 10.1038/ismej.2011.68. PubMed DOI PMC

Mehrshad M, et al. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome. 2018;6:176. doi: 10.1186/s40168-018-0563-8. PubMed DOI PMC

Iba K, Takamiya K. Action spectra for light-inhibition of bacteriochlorophyll and carotenoid accumulation during aerobic growth of photosynthetic bacteria. Plant Cell Physiol. 1989;30:471–477. doi: 10.1093/oxfordjournals.pcp.a077765. DOI

Yurkov VV, van Gemerden H. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 1993;159:84–89. doi: 10.1007/BF00244268. DOI

Nishimura K, et al. Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans. Plant Cell Physiol. 1996;37:153–159. doi: 10.1093/oxfordjournals.pcp.a028926. PubMed DOI

Selyanin V, Hauruseu D, Koblížek M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth. Res. 2016;128:35–43. doi: 10.1007/s11120-015-0197-7. PubMed DOI

Klug, G. & Masuda, S. Regulation of Genes by Light. (ed, Hunter, C. N., Daldal, F., Thurnauer, M. C. & Beaty, J. T.). The purple phototrophic bacteria. Advances in Photosynthesis and Respiration. 28, 727–741 (Springer, 2009).

Linz, A. M., Aylward, F. O., Bertilsson, S. & McMahon, K. D. Time-series metatranscriptomes reveal conserved patterns between phototrophic and heterotrophic microbes in diverse freshwater systems. Limnol. Oceanogr. 10.1002/lno.11306 (2019).

Waidner LA, Kirchman DL. Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ. Microbiol. 2005;7:1896–1908. doi: 10.1111/j.1462-2920.2005.00883.x. PubMed DOI

Čuperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl. Environ. Microb. 2013;79:6439–6446. doi: 10.1128/AEM.01526-13. PubMed DOI PMC

Šimek K, et al. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl. Environ. Microbiol. 2010;76:631–639. doi: 10.1128/AEM.02203-09. PubMed DOI PMC

Shabarova T, et al. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ. Microbiol. 2017;19:1296–1309. doi: 10.1111/1462-2920.13663. PubMed DOI

Zeng Y, Kasalický V, Šimek K, Koblížek M. Genome sequences of two freshwater betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J. Bacteriol. 2012;194:6302–6303. doi: 10.1128/JB.01481-12. PubMed DOI PMC

Hanada S, Takaichi S, Matsuura K, Nakamura K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int. J. Syst. Evol. Micr. 2002;52:187–193. doi: 10.1099/00207713-52-1-187. PubMed DOI

van der Meer MT, et al. Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J. Bacteriol. 2010;192:3033–3042. doi: 10.1128/JB.01610-09. PubMed DOI PMC

Zeng Y, et al. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ. Microbiol. Rep. 2016;8:139–149. doi: 10.1111/1758-2229.12363. PubMed DOI

Delgado-Baquerizo M, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–325. doi: 10.1126/science.aap9516. PubMed DOI

Piwosz K, et al. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS) ISME J. 2018;12:2640–2654. doi: 10.1038/s41396-018-0213-y. PubMed DOI PMC

Kopejtka K. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes. Extremophiles. 2018;22:839–849. doi: 10.1007/s00792-018-1041-8. PubMed DOI

Znachor P, et al. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. Sci. Total Environ. 2018;24:24–33. doi: 10.1016/j.scitotenv.2017.12.061. PubMed DOI

Beutler M, et al. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res. 2002;72:39–53. doi: 10.1023/A:1016026607048. PubMed DOI

Coleman AW. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol Oceanogr. 1981;25:948–951. doi: 10.4319/lo.1980.25.5.0948. DOI

Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 2005;71:6885–6899. doi: 10.1128/AEM.71.11.6885-6899.2005. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Fish JA, et al. FunGene: the Functional Gene Pipeline and Repository. Front. Microbiol. 2013;4:291. doi: 10.3389/fmicb.2013.00291. PubMed DOI PMC

Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Zeng YH, Chen XH, Jiao NZ. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett. Appl. Microbiol. 2007;45:639–645. doi: 10.1111/j.1472-765X.2007.02247.x. PubMed DOI

Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ. Microbiol. 2014;16:2953–2965. doi: 10.1111/1462-2920.12278. PubMed DOI

Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–20. doi: 10.1093/molbev/msn067. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Minimal transcriptional regulation of horizontally transferred photosynthesis genes in phototrophic bacterium Gemmatimonas phototrophica

. 2024 Sep 17 ; 9 (9) : e0070624. [epub] 20240827

Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon

. 2024 Jun 17 ; 100 (7) : .

Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters

. 2024 Mar 27 ; 12 (1) : 65. [epub] 20240327

A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer

. 2024 Mar 19 ; 9 (3) : e0131123. [epub] 20240220

Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake

. 2023 Feb ; 15 (1) : 60-71. [epub] 20221212

Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

. 2022 Apr ; 16 (4) : 1046-1054. [epub] 20211120

Phylum Gemmatimonadota and Its Role in the Environment

. 2022 Jan 12 ; 10 (1) : . [epub] 20220112

Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5

. 2021 Apr 06 ; 9 (4) : . [epub] 20210406

Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes

. 2021 Mar 16 ; 6 (2) : . [epub] 20210316

Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment

. 2020 Jul 01 ; 5 (4) : . [epub] 20200701

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...