Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32548264
PubMed Central
PMC7274798
DOI
10.1126/sciadv.aaz8809
PII: aaz8809
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Institut für Physik Johannes Gutenberg Universität Mainz 55128 Mainz Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Hall E. H., On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).
Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P., Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Shtrikman S., Thomas H., Remarks on linear magneto-resistance and magneto-heat-conductivity. Solid State Commun. 3, 147–150 (1965).
Kleiner W. H., Space-time symmetry of transport coefficients. Phys. Rev. 142, 318–326 (1966).
Seemann M., Ködderitzsch D., Wimmer S., Ebert H., Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).
Suzuki M.-T., Koretsune T., Ochi M., Arita R., Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).
Grimmer H., General relations for transport properties in magnetically ordered crystals. Acta Crystallogr. A 49, 763–771 (1993).
Chen H., Niu Q., Macdonald A. H., Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). PubMed
Kübler J., Felser C., Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).
Nakatsuji S., Kiyohara N., Higo T., Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). PubMed
Nayak A. K., Fischer J. E., Sun Y., Yan B., Karel J., Komarek A. C., Shekhar C., Kumar N., Schnelle W., Kübler J., Felser C., Parkin S. S. P., Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016). PubMed PMC
Liu Z. Q., Chen H., Wang J. M., Liu J. H., Wang K., Feng Z. X., Yan H., Wang X. R., Jiang C. B., Coey J. M. D., MacDonald A. H., Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).
MacHida Y., Nakatsuji S., Onoda S., Tayama T., Sakakibara T., Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010). PubMed
Shindou R., Nagaosa N., Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001). PubMed
Nagaosa N., Tokura Y., Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013). PubMed
Sürgers C., Fischer G., Winkel P., Löhneysen H. V., Large topological Hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 5, 3400 (2014). PubMed
Ghimire N. J., Botana A. S., Jiang J. S., Zhang J., Chen Y.-S., Mitchell J. F., Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018). PubMed PMC
C. Bradley, A. Cracknell, The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon Press, 1972).
Šmejkal L., Železný J., Sinova J., Jungwirth T., Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017). PubMed
Suzuki T., Chisnell R., Devarakonda A., Liu Y.-T., Feng W., Xiao D., Lynn J. W., Checkelsky J. G., Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).
Vistoli L., Wang W., Sander A., Zhu Q., Casals B., Cichelero R., Barthélémy A., Fusil S., Herranz G., Valencia S., Abrudan R., Weschke E., Nakazawa K., Kohno H., Santamaria J., Wu W., Garcia V., Bibes M., Giant topological Hall effect in correlated oxide thin films. Nat. Phys. 15, 67–72 (2019).
Kzyaloshinskii I. E., The magnetic structure of fluorides of the transition metals. Sov. Phys. JETP 6, 1120–1122 (1958).
Haldane F. D. M., Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988). PubMed
Bzdušek T., Wu Q., Rüegg A., Sigrist M., Soluyanov A. A., Nodal-chain metals. Nature 538, 75–78 (2016). PubMed
Gopalan V., Litvin D. B., Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10, 376–381 (2011). PubMed
Berlijn T., Snijders P. C., Delaire O., Zhou H.-D., Maier T. A., Cao H.-B., Chi S.-X., Matsuda M., Wang Y., Koehler M. R., Kent P. R. C., Weitering H. H., Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017). PubMed
Zhu Z. H., Strempfer J., Rao R. R., Occhialini C. A., Pelliciari J., Choi Y., Kawaguchi T., You H., Shao-Horn Y., Comin R., Anomalous antiferromagnetism in metallic RuO2 determined by resonant x-ray scattering. Phys. Rev. Lett. 122, 017202 (2019). PubMed
Takahashi K. S., Ishizuka H., Murata T., Wang Q. Y., Tokura Y., Nagaosa N., Kawasaki M., Anomalous Hall effect derived from multiple Weyl nodes in high-mobility EuTiO3 films. Sci. Adv. 4, eaar7880 (2018). PubMed PMC
Zhang Y., Sun Y., Yang H., Železný J., Parkin S. P. P., Felser C., Yan B., Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).
Kim K., Seo J., Lee E., Ko K.-T., Kim B. S., Jang B. G., Ok J. M., Lee J., Jo Y. J., Kang W., Shim J. H., Kim C., Yeom H. W., Il Min B., Yang B.-J., Kim J. S., Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018). PubMed
Roman E., Mokrousov Y., Souza I., Orientation dependence of the intrinsic anomalous hall effect in hcp cobalt. Phys. Rev. Lett. 103, 097203 (2009). PubMed
Parkin S. S. P., Marseglia E. A., Brown P. J., Magnetic structure of Co1/3 NbS2 and Co1/3 TaS2. J. Phys. C Solid State Phys. 16, 2765–2778 (1983).
Chang G., Wieder B. J., Schindler F., Sanchez D. S., Belopolski I., Huang S.-M., Singh B., Wu D., Chang T.-R., Neupert T., Xu S.-Y., Lin H., Hasan M. Z., Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018). PubMed
Gallego S. V., Perez-Mato J. M., Elcoro L., Tasci E. S., Hanson R. M., Aroyo M. I., Madariaga G., MAGNDATA: Towards a database of magnetic structures. II. The incommensurate case. J. Appl. Cryst. 49, 1941–1956 (2016).
Šmejkal L., Mokrousov Y., Yan B., MacDonald A. H., Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Gerber A., Interpretation of experimental evidence of the topological hall effect. Phys. Rev. B 98, 214440 (2018).
Banerjee-Ghosh K., Ben Dor O., Tassinari F., Capua E., Yochelis S., Capua A., Yang S.-H., Parkin S. S. P., Sarkar S., Kronik L., Baczewski L. T., Naaman R., Paltiel Y., Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). PubMed
Tokura Y., Yasuda K., Tsukazaki A., Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed
Mostofi A. A., Yates J. R., Pizzi G., Lee Y.-S., Souza I., Vanderbilt D., Marzari N., An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).
Wu Q., Zhang S., Song H.-F., Troyer M., Soluyanov A. A., Wanniertools : An open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).
Yao Y., Kleinman L., MacDonald A. H., Sinova J., Jungwirth T., Wang D.-s., Wang E., Niu Q., First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 92, 037204 (2004). PubMed
Liu E., Sun Y., Kumar N., Muechler L., Sun A., Jiao L., Yang S.-Y., Liu D., Liang A., Xu Q., Kroder J., Süß V., Borrmann H., Shekhar C., Wang Z., Xi C., Wang W., Schnelle W., Wirth S., Chen Y., Goennenwein S. T. B., Felser C., Giant anomalous Hall effect in a ferromagnetic kagomé-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). PubMed PMC
Železný J., Zhang Y., Felser C., Yan B., Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). PubMed
Ryden W. D., Lawson A. W., Sartain C. C., Electrical transport properties of IrO2 and RuO2. Phys. Rev. B 1, 1494–1500 (1970).
Nanoscale imaging and control of altermagnetism in MnTe
Non-relativistic torque and Edelstein effect in non-collinear magnets
Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
Direct observation of altermagnetic band splitting in CrSb thin films
Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2
Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor
Altermagnetic lifting of Kramers spin degeneracy
Prediction of unconventional magnetism in doped FeSb2
Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5
Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn