Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets

. 2020 Jun ; 6 (23) : eaaz8809. [epub] 20200605

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32548264

Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.

Zobrazit více v PubMed

Hall E. H., On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P., Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

Shtrikman S., Thomas H., Remarks on linear magneto-resistance and magneto-heat-conductivity. Solid State Commun. 3, 147–150 (1965).

Kleiner W. H., Space-time symmetry of transport coefficients. Phys. Rev. 142, 318–326 (1966).

Seemann M., Ködderitzsch D., Wimmer S., Ebert H., Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).

Suzuki M.-T., Koretsune T., Ochi M., Arita R., Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

Grimmer H., General relations for transport properties in magnetically ordered crystals. Acta Crystallogr. A 49, 763–771 (1993).

Chen H., Niu Q., Macdonald A. H., Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). PubMed

Kübler J., Felser C., Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

Nakatsuji S., Kiyohara N., Higo T., Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). PubMed

Nayak A. K., Fischer J. E., Sun Y., Yan B., Karel J., Komarek A. C., Shekhar C., Kumar N., Schnelle W., Kübler J., Felser C., Parkin S. S. P., Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016). PubMed PMC

Liu Z. Q., Chen H., Wang J. M., Liu J. H., Wang K., Feng Z. X., Yan H., Wang X. R., Jiang C. B., Coey J. M. D., MacDonald A. H., Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

MacHida Y., Nakatsuji S., Onoda S., Tayama T., Sakakibara T., Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010). PubMed

Shindou R., Nagaosa N., Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001). PubMed

Nagaosa N., Tokura Y., Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013). PubMed

Sürgers C., Fischer G., Winkel P., Löhneysen H. V., Large topological Hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 5, 3400 (2014). PubMed

Ghimire N. J., Botana A. S., Jiang J. S., Zhang J., Chen Y.-S., Mitchell J. F., Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018). PubMed PMC

C. Bradley, A. Cracknell, The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon Press, 1972).

Šmejkal L., Železný J., Sinova J., Jungwirth T., Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017). PubMed

Suzuki T., Chisnell R., Devarakonda A., Liu Y.-T., Feng W., Xiao D., Lynn J. W., Checkelsky J. G., Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

Vistoli L., Wang W., Sander A., Zhu Q., Casals B., Cichelero R., Barthélémy A., Fusil S., Herranz G., Valencia S., Abrudan R., Weschke E., Nakazawa K., Kohno H., Santamaria J., Wu W., Garcia V., Bibes M., Giant topological Hall effect in correlated oxide thin films. Nat. Phys. 15, 67–72 (2019).

Kzyaloshinskii I. E., The magnetic structure of fluorides of the transition metals. Sov. Phys. JETP 6, 1120–1122 (1958).

Haldane F. D. M., Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988). PubMed

Bzdušek T., Wu Q., Rüegg A., Sigrist M., Soluyanov A. A., Nodal-chain metals. Nature 538, 75–78 (2016). PubMed

Gopalan V., Litvin D. B., Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10, 376–381 (2011). PubMed

Berlijn T., Snijders P. C., Delaire O., Zhou H.-D., Maier T. A., Cao H.-B., Chi S.-X., Matsuda M., Wang Y., Koehler M. R., Kent P. R. C., Weitering H. H., Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017). PubMed

Zhu Z. H., Strempfer J., Rao R. R., Occhialini C. A., Pelliciari J., Choi Y., Kawaguchi T., You H., Shao-Horn Y., Comin R., Anomalous antiferromagnetism in metallic RuO2 determined by resonant x-ray scattering. Phys. Rev. Lett. 122, 017202 (2019). PubMed

Takahashi K. S., Ishizuka H., Murata T., Wang Q. Y., Tokura Y., Nagaosa N., Kawasaki M., Anomalous Hall effect derived from multiple Weyl nodes in high-mobility EuTiO3 films. Sci. Adv. 4, eaar7880 (2018). PubMed PMC

Zhang Y., Sun Y., Yang H., Železný J., Parkin S. P. P., Felser C., Yan B., Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

Kim K., Seo J., Lee E., Ko K.-T., Kim B. S., Jang B. G., Ok J. M., Lee J., Jo Y. J., Kang W., Shim J. H., Kim C., Yeom H. W., Il Min B., Yang B.-J., Kim J. S., Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018). PubMed

Roman E., Mokrousov Y., Souza I., Orientation dependence of the intrinsic anomalous hall effect in hcp cobalt. Phys. Rev. Lett. 103, 097203 (2009). PubMed

Parkin S. S. P., Marseglia E. A., Brown P. J., Magnetic structure of Co1/3 NbS2 and Co1/3 TaS2. J. Phys. C Solid State Phys. 16, 2765–2778 (1983).

Chang G., Wieder B. J., Schindler F., Sanchez D. S., Belopolski I., Huang S.-M., Singh B., Wu D., Chang T.-R., Neupert T., Xu S.-Y., Lin H., Hasan M. Z., Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018). PubMed

Gallego S. V., Perez-Mato J. M., Elcoro L., Tasci E. S., Hanson R. M., Aroyo M. I., Madariaga G., MAGNDATA: Towards a database of magnetic structures. II. The incommensurate case. J. Appl. Cryst. 49, 1941–1956 (2016).

Šmejkal L., Mokrousov Y., Yan B., MacDonald A. H., Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

Gerber A., Interpretation of experimental evidence of the topological hall effect. Phys. Rev. B 98, 214440 (2018).

Banerjee-Ghosh K., Ben Dor O., Tassinari F., Capua E., Yochelis S., Capua A., Yang S.-H., Parkin S. S. P., Sarkar S., Kronik L., Baczewski L. T., Naaman R., Paltiel Y., Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). PubMed

Tokura Y., Yasuda K., Tsukazaki A., Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed

Mostofi A. A., Yates J. R., Pizzi G., Lee Y.-S., Souza I., Vanderbilt D., Marzari N., An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

Wu Q., Zhang S., Song H.-F., Troyer M., Soluyanov A. A., Wanniertools : An open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

Yao Y., Kleinman L., MacDonald A. H., Sinova J., Jungwirth T., Wang D.-s., Wang E., Niu Q., First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 92, 037204 (2004). PubMed

Liu E., Sun Y., Kumar N., Muechler L., Sun A., Jiao L., Yang S.-Y., Liu D., Liang A., Xu Q., Kroder J., Süß V., Borrmann H., Shekhar C., Wang Z., Xi C., Wang W., Schnelle W., Wirth S., Chen Y., Goennenwein S. T. B., Felser C., Giant anomalous Hall effect in a ferromagnetic kagomé-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). PubMed PMC

Železný J., Zhang Y., Felser C., Yan B., Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). PubMed

Ryden W. D., Lawson A. W., Sartain C. C., Electrical transport properties of IrO2 and RuO2. Phys. Rev. B 1, 1494–1500 (1970).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanoscale imaging and control of altermagnetism in MnTe

. 2024 Dec ; 636 (8042) : 348-353. [epub] 20241211

Non-relativistic torque and Edelstein effect in non-collinear magnets

. 2024 Sep 03 ; 15 (1) : 7663. [epub] 20240903

Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate

. 2024 Jun 11 ; 15 (1) : 4961. [epub] 20240611

Direct observation of altermagnetic band splitting in CrSb thin films

. 2024 Mar 08 ; 15 (1) : 2116. [epub] 20240308

Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2

. 2024 Feb 02 ; 10 (5) : eadj4883. [epub] 20240131

Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor

. 2024 Feb ; 11 (6) : e2307306. [epub] 20231208

Altermagnetic lifting of Kramers spin degeneracy

. 2024 Feb ; 626 (7999) : 517-522. [epub] 20240214

Prediction of unconventional magnetism in doped FeSb2

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5

. 2020 Jul ; 6 (31) : eabb6003. [epub] 20200731

Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn

. 2019 Nov 29 ; 10 (1) : 5459. [epub] 20191129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...