• This record comes from PubMed

Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances

. 2020 Jul 23 ; 9 (8) : . [epub] 20200723

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
MUNI/A/0947/2019 Masarykova Univerzita

The number of cases of oral cavity inflammation in the population has been recently increasing, with periodontitis being the most common disease. It is caused by a change in the microbial composition of the biofilm in the periodontal pockets. In this context, an increased incidence of sulfate-reducing bacteria (SRB) in the oral cavity has been found, which are a part of the common microbiome of the mouth. This work is devoted to the description of the diversity of SRB isolated from the oral cavity. It also deals with the general description of periodontitis in terms of manifestations and origin. It describes the ability of SRB to participate in its development, although their effect on periodontal inflammation is not fully understood. The production of hydrogen sulfide as a cytochrome oxidase inhibitor may play a role in the etiology. A meta-analysis was conducted based on studies of the occurrence of SRB in humans.

See more in PubMed

Hasturk H., Kantarci A., Van Dyke T.E. Oral inflammatory diseases and systemic inflammation: Role of the macrophage. Front. Immunol. 2012;3:118. doi: 10.3389/fimmu.2012.00118. PubMed DOI PMC

Paleri V., Staines K., Sloan P., Douglas A., Wilson J. Evaluation of oral ulceration in primary care. BMJ. 2010;340:c2639. doi: 10.1136/bmj.c2639. PubMed DOI

van der Hoeven J., van der Kieboom C., Schaeken M. Sulfate-Reducing Bacteria in the Periodontal Pocket. Oral Microbiol. Immun. 1995;10:288–290. doi: 10.1111/j.1399-302X.1995.tb00156.x. PubMed DOI

Langendijk P.S., Kulik E.M., Sandmeier H., Meyer J., van der Hoeven J.S. Isolation of Desulfomicrobium orale sp. Nov. and Desulfovibrio Strain NY682, Oral Sulfate-Reducing Bacteria Involved in Human Periodontal Disease. Int. J. Syst. Evol. Microbiol. 2001;51:1035–1044. doi: 10.1099/00207713-51-3-1035. PubMed DOI

Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI

Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC

Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI

Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol. Lett. 2015;36:106–113. PubMed

Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI

Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI

Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI

Cullinan M.P., Ford P.J., Seymour G.J. Periodontal disease and systemic health: Current status. Aust. Dent. J. 2009;54:S62–S69. doi: 10.1111/j.1834-7819.2009.01144.x. PubMed DOI

Kane S.F. The effects of oral health on systemic health. Gen Dent. 2017;65:30–34. PubMed

Seneviratne C.J., Zhang C.F., Samaranayake L.P. Dental plaque biofilm in oral health and disease. Chin. J. Dent. Res. 2011;14:87. PubMed

Flemmig T.F. Periodontitis. Ann. Periodontol. 1999;4:32–37. doi: 10.1902/annals.1999.4.1.32. PubMed DOI

Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC

Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2020;25:1–15. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2020;25:1–8. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC

Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI

Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI

Castro H.F., Williams N.H., Ogram A. Phylogeny of Sulfate-Reducing Bacteria. FEMS Microbiol. Ecol. 2000;31:1–9. doi: 10.1016/S0168-6496(99)00071-9. PubMed DOI

Mori K., Kim H., Kakegawa T., Hanada S. A Novel Lineage of Sulfate-Reducing Microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a New Thermophilic Isolate from a Hot Spring. Extremophiles. 2003;7:283–290. doi: 10.1007/s00792-003-0320-0. PubMed DOI

Postgate J.R. The Sulphate-Reducing Bacteria. 2nd ed. Cambridge University Press; Cambridge, UK: New York, NY, USA: 1984.

Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI

Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC

Loubinoux J., Bisson-Boutelliez C., Miller N., Le Faou A.E. Isolation of the Provisionally Named Desulfovibrio Fairfieldensis from Human Periodontal Pockets. Oral Microbiol. Immunol. 2002;17:321–323. doi: 10.1034/j.1399-302X.2002.170510.x. PubMed DOI

Vianna M.E., Holtgraewe S., Seyfarth I., Conrads G., Horz H.P. Quantitative Analysis of Three Hydrogenotrophic Microbial Groups, Methanogenic Archaea, Sulfate-Reducing Bacteria, and Acetogenic Bacteria, within Plaque Biofilms Associated with Human Periodontal Disease. J. Bacteriol. 2008;190:3779–3785. doi: 10.1128/JB.01861-07. PubMed DOI PMC

Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Springer; Boston, MA, USA: 2005. Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria; p. 1388.

Rosenberg E., Delong E.F., Lory S., Stackebrandt E., Thompson F. The Prokaryotes. Deltaproteobacteria and Epsilonproteobacteria. 4th ed. Springer; Berlin, German: 2014.

Barton L.L., Hamilton W.A. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press; Cambridge, UK: 2010. p. 553.

Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. J. Clin. Med. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI

Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC

Goldstein E.J.C., Citron D.M., Peraino V.A., Cross S.A. Desulfovibrio Desulfuricans Bacteremia and Review of Human Desulfovibrio Infections. J. Clin. Microbiol. 2003;41:2752–2754. doi: 10.1128/JCM.41.6.2752-2754.2003. PubMed DOI PMC

Kobayashi K., Takahashi E., Ishimoto M. Biochemical Studies on Sulfate-reducing Bacteria: XI. Purification and Some Properties of Sulfite Reductase, Desulfoviridin. J. Biochem. 1972;72:879–887. doi: 10.1093/oxfordjournals.jbchem.a129982. PubMed DOI

Gilbert D. New Tools at DOE’s Genomics Jamboree. [(accessed on 30 April 2004)];2004 Available online: https://www2.lbl.gov/Publications/Currents/Archive/Apr-30-2004.html.

Loubinoux J. Reclassification of the Only Species of the Genus Desulfomonas, Desulfomonas Pigra, as Desulfovibrio Piger. Comb. Nov. Int. J. Syst. Evol. Microbiol. 2002;52:1305–1308. PubMed

Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC

Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI

Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference Mendel Net; Brno, Czech Republic. 6–7 November 2019; pp. 702–707.

Langendijk P.S., Hagemann J., van der Hoeven J.S. Sulfate-Reducing Bacteria in Periodontal Pockets and in Healthy Oral Sites. J. Clin. Periodontol. 1999;26:596–599. doi: 10.1034/j.1600-051X.1999.260906.x. PubMed DOI

Willis C.L.R., Gibson G., Allison C., Macfarlane S., Holt J.S. Growth, Incidence and Activities of Dissimilatory Sulfate-Reducing Bacteria in the Human Oral Cavity. FEMS Microbiol. Lett. 1995;129:267–271. doi: 10.1111/j.1574-6968.1995.tb07591.x. PubMed DOI

Thevenieau F., Fardeau M.-L., Ollivier B., Joulian C., Baena S. Desulfomicrobium thermophilum sp. Nov., a Novel Thermophilic Sulphate-Reducing Bacterium Isolated from a Terrestrial Hot Spring in Colombia. Extremophiles. 2007;11:295–303. doi: 10.1007/s00792-006-0039-9. PubMed DOI

Widdel F., Pfennig N. Studies on Dissimilatory Sulfate-Reducing Bacteria That Decompose Fatty Acids. Arch. Microbiol. 1981;129:385–400. doi: 10.1007/BF00406470. PubMed DOI

Papapanou P.N., Sanz M., Buduneli N., Dietrich T., Feres M., Fine D.H., Flemmig T.F., Garcia R., Giannobile W.V., Graziani F., et al. Periodontitis: Consensus Report of Workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and PeriImplant Diseases and Conditions: Classification and Case Definitions for Periodontitis. J. Periodontol. 2018;89:S173–S182. doi: 10.1002/JPER.17-0721. PubMed DOI

Loesche W.J., Grossman N.S. Periodontal Disease as a Specific, Albeit Chronic, Infection: Diagnosis and Treatment. Clin. Microbiol. Rev. 2001;14:727–752. doi: 10.1128/CMR.14.4.727-752.2001. PubMed DOI PMC

Kilian M., Chapple I.L.C., Hannig M., Marsh P.D., Meuric V., Pedersen A.M.L., Tonetti M.S., Wade W.G., Zaura E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016;221:657–666. doi: 10.1038/sj.bdj.2016.865. PubMed DOI

Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C.R., Yu W.-H., Lakshmanan A., Wade W.G. The Human Oral Micro-biome. J. Bacteriol. 2010;192:5002–5017. doi: 10.1128/JB.00542-10. PubMed DOI PMC

Xu X., He J., Xue J., Wang Y., Li K., Zhang K., Guo Q., Liu X., Zhou Y., Cheng L., et al. Oral Cavity Contains Distinct Niches with Dynamic Microbial Communities: Oral Microbiome Differs by Age and Location. Environ. Microbiol. 2015;17:699–710. doi: 10.1111/1462-2920.12502. PubMed DOI

Li Y.-H., Tian X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors. 2012;12:2519–2538. doi: 10.3390/s120302519. PubMed DOI PMC

Darout I.A. Oral Bacterial Interactions in Periodontal Health and Disease. J. Dent. Oral Hyg. 2014;6:51–57.

Haffajee A.D., Socransky S.S. Microbial Etiological Agents of Destructive Periodontal Diseases. Periodontol. 2000. 1994;5:78–111. doi: 10.1111/j.1600-0757.1994.tb00020.x. PubMed DOI

Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent R.L. Microbial Complexes in Subgingival Plaque. J. Clin. Periodontol. 1998;25:134–144. doi: 10.1111/j.1600-051X.1998.tb02419.x. PubMed DOI

Haffajee A.D., Socransky S.S., Patel M.R., Song X. Microbial Complexes in Supragingival Plaque. Oral Microbiol. Immunol. 2008;23:196–205. doi: 10.1111/j.1399-302X.2007.00411.x. PubMed DOI

Van Leeuwenhoek A. An Abstract of a Letter from Antonie van Leeuwenhoek, Sep. 12, 1683. about Animals in the Scrurf of the Te-eth. Philos. Trans. R. Soc. Lond. 1684;14:568–574.

Rosier B.T., De Jager M., Zaura E., Krom B.P. Historical and Contemporary Hypotheses on the Development of Oral Diseases: Are We There Yet? Front. Cell. Infect. Microbiol. 2014;4 doi: 10.3389/fcimb.2014.00092. PubMed DOI PMC

Miller W.D. Microorganisms of the Human Mouth. S. S. White and Co.; Philadelphia, PA, USA: 1890.

Theilade E. The Non-specific Theory in Microbial Etiology of Inflammatory Periodontal Diseases. J. Clin. Periodontol. 1986;13:905–911. doi: 10.1111/j.1600-051X.1986.tb01425.x. PubMed DOI

Keyes P.H. Are Periodontal Pathoses Caused by Bacterial Infections on Cervicoradicular Surfaces of Teeth? J. Dent. Res. 1970;49:223–228. doi: 10.1177/00220345700490020501. DOI

Loesche W.J. Chemotherapy of Dental Plaque Infections. Oral Sci. Rev. 1976;9:65–107. PubMed

Marsh P.D. Microbial Ecology of Dental Plaque and Its Significance in Health and Disease. Adv. Dent. Res. 1994;8:263–271. doi: 10.1177/08959374940080022001. PubMed DOI

Marsh P.D., Devine D.A. How Is the Development of Dental Bio-films Influenced by the Host? Host Influence on Biofilm Development. J. Clin. Periodontol. 2011;38:28–35. doi: 10.1111/j.1600-051X.2010.01673.x. PubMed DOI

Hajishengallis G., Darveau R.P., Curtis M.A. The Keystone-Pathogen Hypothesis. Nat. Rev. Microbiol. 2012;10:717–725. doi: 10.1038/nrmicro2873. PubMed DOI PMC

Abusleme L., Dupuy A.K., Dutzan N., Silva N., Burleson J.A., Strausbaugh L.D., Gamonal J., Diaz P.I. The Subgingival Microbiome in Health and Periodontitis and Its Relationship with Community Biomass and Inflammation. ISME J. 2013;7:1016–1025. doi: 10.1038/ismej.2012.174. PubMed DOI PMC

Sanz M., van Winkelhoff A.J., on Behalf of Working Group 1 of the Seventh European Workshop on Periodontology Periodontal Infections: Understanding the Complexity-Consensus of the Seventh European Workshop on Periodontology: Periodontal Infections: Understanding the Complexity. J. Clin. Periodontol. 2011;38:3–6. doi: 10.1111/j.1600-051X.2010.01681.x. PubMed DOI

Darveau R.P. Periodontitis: A Polymicrobial Disruption of Host Homeostasis. Nat. Rev. Microbiol. 2010;8:481–490. doi: 10.1038/nrmicro2337. PubMed DOI

Graves D. Cytokines That Promote Periodontal Tissue Destruction. J. Periodontol. 2008;79:1585–1591. doi: 10.1902/jop.2008.080183. PubMed DOI

Nagasawa T., Kiji M., Yashiro R., Hormdee D., Lu H., Kunze M., Suda T., Koshy G., Kobayashi H., Oda S., et al. Roles of Receptor Activator of Nuclear Factor-?B Ligand (RAN-KL) and Osteoprotegerin in Periodontal Health and Disease. Periodontol. 2000. 2007;43:65–84. doi: 10.1111/j.1600-0757.2006.00185.x. PubMed DOI

Armitage G.C. Development of a Classification System for Periodontal Diseases and Conditions. Ann. Periodontol. 1999;4:1–6. doi: 10.1902/annals.1999.4.1.1. PubMed DOI

Highfield J. Diagnosis and Classification of Periodontal Disease. Aust. Dent. J. 2009;54:S11–S26. doi: 10.1111/j.1834-7819.2009.01140.x. PubMed DOI

Bělák Š., Starosta M., Žižka R., Šedý J. Nová klasifikace parodontálních a periimplántátových onemocnění. LKS Časopis Čes. Stomatol. Komory. 2019;29:10–17.

Caton J.G., Armitage G., Berglundh T., Chapple I.L.C., Jepsen S., Kornman K.S., Mealey B.L., Papapanou P.N., Sanz M., Tonetti M.S. A New Classification Scheme for Periodontal and Peri-Implant Diseases and Conditions—Introduction and Key Changes from the 1999 Classification. J. Clin. Periodontol. 2018;45:S1–S8. doi: 10.1111/jcpe.12935. PubMed DOI

Marcenes W., Kassebaum N.J., Bernabé E., Flaxman A., Naghavi M., Lopez A., Murray C.J.L. Global Burden of Oral Conditions in 1990–2010: A Systematic Analysis. J. Dent. Res. 2013;92:592–597. doi: 10.1177/0022034513490168. PubMed DOI PMC

Petersen P.E., Bourgeois D., Ogawa H., Estupinan-Day S., Ndiaye C. The Global Burden of Oral Diseases and Risks to Oral Health. Bull. World Health Organ. 2005;9 doi: 10.1111/j.1600-0528.2004.00219.x. PubMed DOI PMC

Starosta M., Adámková H. Repetitorium Parodontologie. Univerzita Palackého; Olomouci, Czech: 2002.

Boopathy R., Robichaux M., LaFont D., Howell M. Activity of Sulfate-Reducing Bacteria in Human Periodontal Pocket. Can. J. Microbiol. 2002;48:1099–1103. doi: 10.1139/w02-104. PubMed DOI

Langendijk P.S., Hanssen J.T.J., Van der Hoeven J.S. Sulfate-Reducing Bacteria in Association with Human Periodontitis. J. Clin. Periodontol. 2000;27:943–950. doi: 10.1034/j.1600-051x.2000.027012943.x. PubMed DOI

Langendijk-Genevaux P.S., Hanssen J.T.J., Van der Hoeven J.S. Decrease of Sulfate-Reducing Bacteria after Initial Periodontal Treatment. J. Dent. Res. 2001;80:1637–1642. doi: 10.1177/00220345010800070801. PubMed DOI

Langendijk-Genevaux P.S., Grimm W.D., van der Hoeven J.S. Sulfate-Reducing Bacteria in Relation with Other Potential Periodontal Pathogens. J. Clin. Periodontol. 2001;28:1151–1157. doi: 10.1034/j.1600-051X.2001.281210.x. PubMed DOI

Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia Caused by a Strain of Desulfovibrio Related to the Provisionally Named Desulfovibrio Fairfieldensis. J. Clin. Microbiol. 2000;38:931–934. doi: 10.1128/JCM.38.2.931-934.2000. PubMed DOI PMC

Robichaux M., Howell M., Boopathy R. Growth and Activities of Sulfate-Reducing and Methanogenic Bacteria in Human Oral Cavity. Curr. Microbiol. 2003;47:12–16. doi: 10.1007/s00284-002-3930-3. PubMed DOI

Hao O.J., Chen J.M., Huang L., Buglass R.L. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 1996;26:155–187. doi: 10.1080/10643389609388489. DOI

Plugge C.M., Zhang W., Scholten J., Stams A.J. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2011;2:81. doi: 10.3389/fmicb.2011.00081. PubMed DOI PMC

Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069.

Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC

Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., Rittmann S.K.M. Adenosine-5′-Phosphosulfate-and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC

Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., Vítězová M., Rittmann S.K.M. Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People. J. Clin. Med. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC

Florin T.H.J., Neale G., Goretski S., Cummings J.H. The Sulfate Content of Foods and Beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI

Wallace J.L., Motta J.-P., Buret A.G. Hydrogen Sulfide: An Agent of Stability at the Microbiome-Mucosa Interface. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;314:G143–G149. doi: 10.1152/ajpgi.00249.2017. PubMed DOI PMC

Smalley J.W., Dwarakanath D., Rhodes J.M., Hart C.A. Mucin-Sulphatase Activity of Some Oral Streptococci. Caries Res. 1994;28:416–420. doi: 10.1159/000262014. PubMed DOI

De Boever E.H., Loesche W.J. Assessing the Contribution of Anaerobic Microflora of the Tongue to Oral Malodor. J. Am. Dent. Assoc. 1939. 1995;126:1384–1393. doi: 10.14219/jada.archive.1995.0049. PubMed DOI

Tonzetich J. Oral Malodour: An Indicator of Health Status and Oral Cleanliness. Int. Dent. J. 1978;28:309–319. PubMed

Nicholls P., Kim J.K. Sulphide as an Inhibitor and Electron Donor for the Cytochrome c Oxidase System. Can. J. Biochem. 1982;60:613–623. doi: 10.1139/o82-076. PubMed DOI

Persson S. Hydrogen Sulfide and Methyl Mercaptan in Periodontal Pockets. Oral Microbiol. Immunol. 1992;7:378–379. doi: 10.1111/j.1399-302X.1992.tb00641.x. PubMed DOI

Beerens H., Romond C. Sulfate-Reducing Anaerobic Bacteria in Human Feces. Am. J. Clin. Nutr. 1977;30:1770–1776. doi: 10.1093/ajcn/30.11.1770. PubMed DOI

Granlund-Edstedt M., Johansson E., Claesson R., Carlsson J. Effect of Anaerobiosis and Sulfide on Killing of Bacteria by Polymorphonuclear Leukocytes. J. Periodontal Res. 1993;28:346–353. doi: 10.1111/j.1600-0765.1993.tb01078.x. PubMed DOI

Claesson R., Granlund-Edstedt M., Persson S., Carlsson J. Activity of Polymorphonuclear Leukocytes in the Presence of Sulfide. Infect. Immun. 1989;57:2776–2781. doi: 10.1128/IAI.57.9.2776-2781.1989. PubMed DOI PMC

Heggendorn F.L., Souza Gonçalves L., Dias E.P., Silva Junior A., Galvão M.M., Lutterbach M.T.S. Detection of Sulphate-Reducing Bacteria in Human Saliva. Acta Odontol. Scand. 2013;71:1458–1463. doi: 10.3109/00016357.2013.770163. PubMed DOI

Heggendorn F.L., Gonçalves L.D.S., Dias E.P., Heggendorn C., Lutterbach M.T.S. Detekcija Bakterija Koje Reduciraju Sulfate i Ostalih Uzgojivih Fakultativnih Bakterija u Zubnim Tkivima. Acta Stomatol. Croat. 2014;48:116–122. doi: 10.15644/asc48/2.116. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...