Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
MUNI/A/0947/2019
Masarykova Univerzita
PubMed
32717883
PubMed Central
PMC7464432
DOI
10.3390/jcm9082347
PII: jcm9082347
Knihovny.cz E-resources
- Keywords
- SRB, dental plaque, hydrogen sulfide, meta-analysis, oral cavity, periodontal disease, periodontitis, sulfate, sulfate-reducing bacteria,
- Publication type
- Journal Article MeSH
- Review MeSH
The number of cases of oral cavity inflammation in the population has been recently increasing, with periodontitis being the most common disease. It is caused by a change in the microbial composition of the biofilm in the periodontal pockets. In this context, an increased incidence of sulfate-reducing bacteria (SRB) in the oral cavity has been found, which are a part of the common microbiome of the mouth. This work is devoted to the description of the diversity of SRB isolated from the oral cavity. It also deals with the general description of periodontitis in terms of manifestations and origin. It describes the ability of SRB to participate in its development, although their effect on periodontal inflammation is not fully understood. The production of hydrogen sulfide as a cytochrome oxidase inhibitor may play a role in the etiology. A meta-analysis was conducted based on studies of the occurrence of SRB in humans.
See more in PubMed
Hasturk H., Kantarci A., Van Dyke T.E. Oral inflammatory diseases and systemic inflammation: Role of the macrophage. Front. Immunol. 2012;3:118. doi: 10.3389/fimmu.2012.00118. PubMed DOI PMC
Paleri V., Staines K., Sloan P., Douglas A., Wilson J. Evaluation of oral ulceration in primary care. BMJ. 2010;340:c2639. doi: 10.1136/bmj.c2639. PubMed DOI
van der Hoeven J., van der Kieboom C., Schaeken M. Sulfate-Reducing Bacteria in the Periodontal Pocket. Oral Microbiol. Immun. 1995;10:288–290. doi: 10.1111/j.1399-302X.1995.tb00156.x. PubMed DOI
Langendijk P.S., Kulik E.M., Sandmeier H., Meyer J., van der Hoeven J.S. Isolation of Desulfomicrobium orale sp. Nov. and Desulfovibrio Strain NY682, Oral Sulfate-Reducing Bacteria Involved in Human Periodontal Disease. Int. J. Syst. Evol. Microbiol. 2001;51:1035–1044. doi: 10.1099/00207713-51-3-1035. PubMed DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol. Lett. 2015;36:106–113. PubMed
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI
Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI
Cullinan M.P., Ford P.J., Seymour G.J. Periodontal disease and systemic health: Current status. Aust. Dent. J. 2009;54:S62–S69. doi: 10.1111/j.1834-7819.2009.01144.x. PubMed DOI
Kane S.F. The effects of oral health on systemic health. Gen Dent. 2017;65:30–34. PubMed
Seneviratne C.J., Zhang C.F., Samaranayake L.P. Dental plaque biofilm in oral health and disease. Chin. J. Dent. Res. 2011;14:87. PubMed
Flemmig T.F. Periodontitis. Ann. Periodontol. 1999;4:32–37. doi: 10.1902/annals.1999.4.1.32. PubMed DOI
Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2020;25:1–15. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2020;25:1–8. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI
Castro H.F., Williams N.H., Ogram A. Phylogeny of Sulfate-Reducing Bacteria. FEMS Microbiol. Ecol. 2000;31:1–9. doi: 10.1016/S0168-6496(99)00071-9. PubMed DOI
Mori K., Kim H., Kakegawa T., Hanada S. A Novel Lineage of Sulfate-Reducing Microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a New Thermophilic Isolate from a Hot Spring. Extremophiles. 2003;7:283–290. doi: 10.1007/s00792-003-0320-0. PubMed DOI
Postgate J.R. The Sulphate-Reducing Bacteria. 2nd ed. Cambridge University Press; Cambridge, UK: New York, NY, USA: 1984.
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Loubinoux J., Bisson-Boutelliez C., Miller N., Le Faou A.E. Isolation of the Provisionally Named Desulfovibrio Fairfieldensis from Human Periodontal Pockets. Oral Microbiol. Immunol. 2002;17:321–323. doi: 10.1034/j.1399-302X.2002.170510.x. PubMed DOI
Vianna M.E., Holtgraewe S., Seyfarth I., Conrads G., Horz H.P. Quantitative Analysis of Three Hydrogenotrophic Microbial Groups, Methanogenic Archaea, Sulfate-Reducing Bacteria, and Acetogenic Bacteria, within Plaque Biofilms Associated with Human Periodontal Disease. J. Bacteriol. 2008;190:3779–3785. doi: 10.1128/JB.01861-07. PubMed DOI PMC
Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Springer; Boston, MA, USA: 2005. Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria; p. 1388.
Rosenberg E., Delong E.F., Lory S., Stackebrandt E., Thompson F. The Prokaryotes. Deltaproteobacteria and Epsilonproteobacteria. 4th ed. Springer; Berlin, German: 2014.
Barton L.L., Hamilton W.A. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press; Cambridge, UK: 2010. p. 553.
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. J. Clin. Med. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Goldstein E.J.C., Citron D.M., Peraino V.A., Cross S.A. Desulfovibrio Desulfuricans Bacteremia and Review of Human Desulfovibrio Infections. J. Clin. Microbiol. 2003;41:2752–2754. doi: 10.1128/JCM.41.6.2752-2754.2003. PubMed DOI PMC
Kobayashi K., Takahashi E., Ishimoto M. Biochemical Studies on Sulfate-reducing Bacteria: XI. Purification and Some Properties of Sulfite Reductase, Desulfoviridin. J. Biochem. 1972;72:879–887. doi: 10.1093/oxfordjournals.jbchem.a129982. PubMed DOI
Gilbert D. New Tools at DOE’s Genomics Jamboree. [(accessed on 30 April 2004)];2004 Available online: https://www2.lbl.gov/Publications/Currents/Archive/Apr-30-2004.html.
Loubinoux J. Reclassification of the Only Species of the Genus Desulfomonas, Desulfomonas Pigra, as Desulfovibrio Piger. Comb. Nov. Int. J. Syst. Evol. Microbiol. 2002;52:1305–1308. PubMed
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference Mendel Net; Brno, Czech Republic. 6–7 November 2019; pp. 702–707.
Langendijk P.S., Hagemann J., van der Hoeven J.S. Sulfate-Reducing Bacteria in Periodontal Pockets and in Healthy Oral Sites. J. Clin. Periodontol. 1999;26:596–599. doi: 10.1034/j.1600-051X.1999.260906.x. PubMed DOI
Willis C.L.R., Gibson G., Allison C., Macfarlane S., Holt J.S. Growth, Incidence and Activities of Dissimilatory Sulfate-Reducing Bacteria in the Human Oral Cavity. FEMS Microbiol. Lett. 1995;129:267–271. doi: 10.1111/j.1574-6968.1995.tb07591.x. PubMed DOI
Thevenieau F., Fardeau M.-L., Ollivier B., Joulian C., Baena S. Desulfomicrobium thermophilum sp. Nov., a Novel Thermophilic Sulphate-Reducing Bacterium Isolated from a Terrestrial Hot Spring in Colombia. Extremophiles. 2007;11:295–303. doi: 10.1007/s00792-006-0039-9. PubMed DOI
Widdel F., Pfennig N. Studies on Dissimilatory Sulfate-Reducing Bacteria That Decompose Fatty Acids. Arch. Microbiol. 1981;129:385–400. doi: 10.1007/BF00406470. PubMed DOI
Papapanou P.N., Sanz M., Buduneli N., Dietrich T., Feres M., Fine D.H., Flemmig T.F., Garcia R., Giannobile W.V., Graziani F., et al. Periodontitis: Consensus Report of Workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and PeriImplant Diseases and Conditions: Classification and Case Definitions for Periodontitis. J. Periodontol. 2018;89:S173–S182. doi: 10.1002/JPER.17-0721. PubMed DOI
Loesche W.J., Grossman N.S. Periodontal Disease as a Specific, Albeit Chronic, Infection: Diagnosis and Treatment. Clin. Microbiol. Rev. 2001;14:727–752. doi: 10.1128/CMR.14.4.727-752.2001. PubMed DOI PMC
Kilian M., Chapple I.L.C., Hannig M., Marsh P.D., Meuric V., Pedersen A.M.L., Tonetti M.S., Wade W.G., Zaura E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016;221:657–666. doi: 10.1038/sj.bdj.2016.865. PubMed DOI
Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C.R., Yu W.-H., Lakshmanan A., Wade W.G. The Human Oral Micro-biome. J. Bacteriol. 2010;192:5002–5017. doi: 10.1128/JB.00542-10. PubMed DOI PMC
Xu X., He J., Xue J., Wang Y., Li K., Zhang K., Guo Q., Liu X., Zhou Y., Cheng L., et al. Oral Cavity Contains Distinct Niches with Dynamic Microbial Communities: Oral Microbiome Differs by Age and Location. Environ. Microbiol. 2015;17:699–710. doi: 10.1111/1462-2920.12502. PubMed DOI
Li Y.-H., Tian X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors. 2012;12:2519–2538. doi: 10.3390/s120302519. PubMed DOI PMC
Darout I.A. Oral Bacterial Interactions in Periodontal Health and Disease. J. Dent. Oral Hyg. 2014;6:51–57.
Haffajee A.D., Socransky S.S. Microbial Etiological Agents of Destructive Periodontal Diseases. Periodontol. 2000. 1994;5:78–111. doi: 10.1111/j.1600-0757.1994.tb00020.x. PubMed DOI
Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent R.L. Microbial Complexes in Subgingival Plaque. J. Clin. Periodontol. 1998;25:134–144. doi: 10.1111/j.1600-051X.1998.tb02419.x. PubMed DOI
Haffajee A.D., Socransky S.S., Patel M.R., Song X. Microbial Complexes in Supragingival Plaque. Oral Microbiol. Immunol. 2008;23:196–205. doi: 10.1111/j.1399-302X.2007.00411.x. PubMed DOI
Van Leeuwenhoek A. An Abstract of a Letter from Antonie van Leeuwenhoek, Sep. 12, 1683. about Animals in the Scrurf of the Te-eth. Philos. Trans. R. Soc. Lond. 1684;14:568–574.
Rosier B.T., De Jager M., Zaura E., Krom B.P. Historical and Contemporary Hypotheses on the Development of Oral Diseases: Are We There Yet? Front. Cell. Infect. Microbiol. 2014;4 doi: 10.3389/fcimb.2014.00092. PubMed DOI PMC
Miller W.D. Microorganisms of the Human Mouth. S. S. White and Co.; Philadelphia, PA, USA: 1890.
Theilade E. The Non-specific Theory in Microbial Etiology of Inflammatory Periodontal Diseases. J. Clin. Periodontol. 1986;13:905–911. doi: 10.1111/j.1600-051X.1986.tb01425.x. PubMed DOI
Keyes P.H. Are Periodontal Pathoses Caused by Bacterial Infections on Cervicoradicular Surfaces of Teeth? J. Dent. Res. 1970;49:223–228. doi: 10.1177/00220345700490020501. DOI
Loesche W.J. Chemotherapy of Dental Plaque Infections. Oral Sci. Rev. 1976;9:65–107. PubMed
Marsh P.D. Microbial Ecology of Dental Plaque and Its Significance in Health and Disease. Adv. Dent. Res. 1994;8:263–271. doi: 10.1177/08959374940080022001. PubMed DOI
Marsh P.D., Devine D.A. How Is the Development of Dental Bio-films Influenced by the Host? Host Influence on Biofilm Development. J. Clin. Periodontol. 2011;38:28–35. doi: 10.1111/j.1600-051X.2010.01673.x. PubMed DOI
Hajishengallis G., Darveau R.P., Curtis M.A. The Keystone-Pathogen Hypothesis. Nat. Rev. Microbiol. 2012;10:717–725. doi: 10.1038/nrmicro2873. PubMed DOI PMC
Abusleme L., Dupuy A.K., Dutzan N., Silva N., Burleson J.A., Strausbaugh L.D., Gamonal J., Diaz P.I. The Subgingival Microbiome in Health and Periodontitis and Its Relationship with Community Biomass and Inflammation. ISME J. 2013;7:1016–1025. doi: 10.1038/ismej.2012.174. PubMed DOI PMC
Sanz M., van Winkelhoff A.J., on Behalf of Working Group 1 of the Seventh European Workshop on Periodontology Periodontal Infections: Understanding the Complexity-Consensus of the Seventh European Workshop on Periodontology: Periodontal Infections: Understanding the Complexity. J. Clin. Periodontol. 2011;38:3–6. doi: 10.1111/j.1600-051X.2010.01681.x. PubMed DOI
Darveau R.P. Periodontitis: A Polymicrobial Disruption of Host Homeostasis. Nat. Rev. Microbiol. 2010;8:481–490. doi: 10.1038/nrmicro2337. PubMed DOI
Graves D. Cytokines That Promote Periodontal Tissue Destruction. J. Periodontol. 2008;79:1585–1591. doi: 10.1902/jop.2008.080183. PubMed DOI
Nagasawa T., Kiji M., Yashiro R., Hormdee D., Lu H., Kunze M., Suda T., Koshy G., Kobayashi H., Oda S., et al. Roles of Receptor Activator of Nuclear Factor-?B Ligand (RAN-KL) and Osteoprotegerin in Periodontal Health and Disease. Periodontol. 2000. 2007;43:65–84. doi: 10.1111/j.1600-0757.2006.00185.x. PubMed DOI
Armitage G.C. Development of a Classification System for Periodontal Diseases and Conditions. Ann. Periodontol. 1999;4:1–6. doi: 10.1902/annals.1999.4.1.1. PubMed DOI
Highfield J. Diagnosis and Classification of Periodontal Disease. Aust. Dent. J. 2009;54:S11–S26. doi: 10.1111/j.1834-7819.2009.01140.x. PubMed DOI
Bělák Š., Starosta M., Žižka R., Šedý J. Nová klasifikace parodontálních a periimplántátových onemocnění. LKS Časopis Čes. Stomatol. Komory. 2019;29:10–17.
Caton J.G., Armitage G., Berglundh T., Chapple I.L.C., Jepsen S., Kornman K.S., Mealey B.L., Papapanou P.N., Sanz M., Tonetti M.S. A New Classification Scheme for Periodontal and Peri-Implant Diseases and Conditions—Introduction and Key Changes from the 1999 Classification. J. Clin. Periodontol. 2018;45:S1–S8. doi: 10.1111/jcpe.12935. PubMed DOI
Marcenes W., Kassebaum N.J., Bernabé E., Flaxman A., Naghavi M., Lopez A., Murray C.J.L. Global Burden of Oral Conditions in 1990–2010: A Systematic Analysis. J. Dent. Res. 2013;92:592–597. doi: 10.1177/0022034513490168. PubMed DOI PMC
Petersen P.E., Bourgeois D., Ogawa H., Estupinan-Day S., Ndiaye C. The Global Burden of Oral Diseases and Risks to Oral Health. Bull. World Health Organ. 2005;9 doi: 10.1111/j.1600-0528.2004.00219.x. PubMed DOI PMC
Starosta M., Adámková H. Repetitorium Parodontologie. Univerzita Palackého; Olomouci, Czech: 2002.
Boopathy R., Robichaux M., LaFont D., Howell M. Activity of Sulfate-Reducing Bacteria in Human Periodontal Pocket. Can. J. Microbiol. 2002;48:1099–1103. doi: 10.1139/w02-104. PubMed DOI
Langendijk P.S., Hanssen J.T.J., Van der Hoeven J.S. Sulfate-Reducing Bacteria in Association with Human Periodontitis. J. Clin. Periodontol. 2000;27:943–950. doi: 10.1034/j.1600-051x.2000.027012943.x. PubMed DOI
Langendijk-Genevaux P.S., Hanssen J.T.J., Van der Hoeven J.S. Decrease of Sulfate-Reducing Bacteria after Initial Periodontal Treatment. J. Dent. Res. 2001;80:1637–1642. doi: 10.1177/00220345010800070801. PubMed DOI
Langendijk-Genevaux P.S., Grimm W.D., van der Hoeven J.S. Sulfate-Reducing Bacteria in Relation with Other Potential Periodontal Pathogens. J. Clin. Periodontol. 2001;28:1151–1157. doi: 10.1034/j.1600-051X.2001.281210.x. PubMed DOI
Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia Caused by a Strain of Desulfovibrio Related to the Provisionally Named Desulfovibrio Fairfieldensis. J. Clin. Microbiol. 2000;38:931–934. doi: 10.1128/JCM.38.2.931-934.2000. PubMed DOI PMC
Robichaux M., Howell M., Boopathy R. Growth and Activities of Sulfate-Reducing and Methanogenic Bacteria in Human Oral Cavity. Curr. Microbiol. 2003;47:12–16. doi: 10.1007/s00284-002-3930-3. PubMed DOI
Hao O.J., Chen J.M., Huang L., Buglass R.L. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 1996;26:155–187. doi: 10.1080/10643389609388489. DOI
Plugge C.M., Zhang W., Scholten J., Stams A.J. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2011;2:81. doi: 10.3389/fmicb.2011.00081. PubMed DOI PMC
Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069.
Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., Rittmann S.K.M. Adenosine-5′-Phosphosulfate-and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC
Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., Vítězová M., Rittmann S.K.M. Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People. J. Clin. Med. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC
Florin T.H.J., Neale G., Goretski S., Cummings J.H. The Sulfate Content of Foods and Beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI
Wallace J.L., Motta J.-P., Buret A.G. Hydrogen Sulfide: An Agent of Stability at the Microbiome-Mucosa Interface. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;314:G143–G149. doi: 10.1152/ajpgi.00249.2017. PubMed DOI PMC
Smalley J.W., Dwarakanath D., Rhodes J.M., Hart C.A. Mucin-Sulphatase Activity of Some Oral Streptococci. Caries Res. 1994;28:416–420. doi: 10.1159/000262014. PubMed DOI
De Boever E.H., Loesche W.J. Assessing the Contribution of Anaerobic Microflora of the Tongue to Oral Malodor. J. Am. Dent. Assoc. 1939. 1995;126:1384–1393. doi: 10.14219/jada.archive.1995.0049. PubMed DOI
Tonzetich J. Oral Malodour: An Indicator of Health Status and Oral Cleanliness. Int. Dent. J. 1978;28:309–319. PubMed
Nicholls P., Kim J.K. Sulphide as an Inhibitor and Electron Donor for the Cytochrome c Oxidase System. Can. J. Biochem. 1982;60:613–623. doi: 10.1139/o82-076. PubMed DOI
Persson S. Hydrogen Sulfide and Methyl Mercaptan in Periodontal Pockets. Oral Microbiol. Immunol. 1992;7:378–379. doi: 10.1111/j.1399-302X.1992.tb00641.x. PubMed DOI
Beerens H., Romond C. Sulfate-Reducing Anaerobic Bacteria in Human Feces. Am. J. Clin. Nutr. 1977;30:1770–1776. doi: 10.1093/ajcn/30.11.1770. PubMed DOI
Granlund-Edstedt M., Johansson E., Claesson R., Carlsson J. Effect of Anaerobiosis and Sulfide on Killing of Bacteria by Polymorphonuclear Leukocytes. J. Periodontal Res. 1993;28:346–353. doi: 10.1111/j.1600-0765.1993.tb01078.x. PubMed DOI
Claesson R., Granlund-Edstedt M., Persson S., Carlsson J. Activity of Polymorphonuclear Leukocytes in the Presence of Sulfide. Infect. Immun. 1989;57:2776–2781. doi: 10.1128/IAI.57.9.2776-2781.1989. PubMed DOI PMC
Heggendorn F.L., Souza Gonçalves L., Dias E.P., Silva Junior A., Galvão M.M., Lutterbach M.T.S. Detection of Sulphate-Reducing Bacteria in Human Saliva. Acta Odontol. Scand. 2013;71:1458–1463. doi: 10.3109/00016357.2013.770163. PubMed DOI
Heggendorn F.L., Gonçalves L.D.S., Dias E.P., Heggendorn C., Lutterbach M.T.S. Detekcija Bakterija Koje Reduciraju Sulfate i Ostalih Uzgojivih Fakultativnih Bakterija u Zubnim Tkivima. Acta Stomatol. Croat. 2014;48:116–122. doi: 10.15644/asc48/2.116. PubMed DOI PMC
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats