Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33255167
PubMed Central
PMC7760051
DOI
10.3390/cells9122530
PII: cells9122530
Knihovny.cz E-zdroje
- Klíčová slova
- 4D dynamic model, biophysics, cell senescence, cellular mechanisms, nanofibers, natural extracts, precision medicine, skin aging, stem cells,
- MeSH
- exprese genu účinky léků MeSH
- fibroblasty účinky léků MeSH
- keratinocyty účinky léků MeSH
- kmenové buňky účinky léků MeSH
- kultivované buňky MeSH
- kůže účinky léků MeSH
- lidé MeSH
- Myrtus chemie MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- proliferace buněk účinky léků MeSH
- rostlinné extrakty farmakologie MeSH
- stárnutí buněk účinky léků MeSH
- stárnutí kůže účinky léků MeSH
- ultrafialové záření škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
- rostlinné extrakty MeSH
Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.
Department Medical Sciences Section Experimental Medicine University of Ferrara 44121 Ferrara Italy
Department of Agriculture University of Sassari Via De Nicola 9 07100 Sassari Italy
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 B 07100 Sassari Italy
Department of Medical Surgical and Experimental Sciences University of Sassari 07100 Sassari Italy
Istituto di Ricerca Genetica e Biomedica Consiglio Nazionale delle Ricerche 09042 Monserrato Italy
Istituto di Scienze delle Produzioni Alimentari Traversa la Crucca 3 07100 Sassari Italy
UCEEB Czech Technical University Trinecka 1024 273 43 Bustehrad Czech Republic
Zobrazit více v PubMed
Kim E.K., Kim H.O., Park Y.M., Park C.J., Yu D.S., Lee J.Y. Prevalence and risk factors of depression in geriatric patients with dermatological diseases. Ann. Dermatol. 2013;25:278–284. doi: 10.5021/ad.2013.25.3.278. PubMed DOI PMC
Draelos Z.D. Cosmetics and skin care products. A historical perspective. Dermatol. Clin. 2000;18:557–559. doi: 10.1016/S0733-8635(05)70206-0. PubMed DOI
Tundis R., Loizzo M.R., Bonesi M., Menichini F. Potential role of natural compounds against skin aging. Curr. Med. Chem. 2015;22:1515–1538. doi: 10.2174/0929867322666150227151809. PubMed DOI
Barry B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI
Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI
Amler E., Filova E., Buzgo M., Prosecka E., Rampichova M., Necas A., Nooeaid P., Boccaccini A.R. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine. 2014;9:1083–1094. doi: 10.2217/nnm.14.57. PubMed DOI
Chakraborty S., Liao I.C., Adler A., Leong K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 2009;61:1043–1054. doi: 10.1016/j.addr.2009.07.013. PubMed DOI PMC
Chew S.Y., Hufnagel T.C., Lim C.T., Leong K.W. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology. 2006;17:3880–3891. doi: 10.1088/0957-4484/17/15/045. PubMed DOI PMC
Charles D.J. Antioxidant Properties of Spices, Herbs and Other Sources. Springer; New York, NY, USA: 2013. Myrtle; pp. 409–410.
Olga G., Stavros L., Ioanna C., John T. Revaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol. 2008;226:583–590.
Bachir R.G., Benali M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012;2:739–742. doi: 10.1016/S2221-1691(12)60220-2. PubMed DOI PMC
Evans W.C. Trease and Evans’ Pharmacognosy. 15th ed. W.B. Sanders; Nottingham, UK: 2002. p. 477.
Mendes M.M., Gazarini L.C., Rodrigues M.L. Acclimation of Myrtus communis to contrasting Mediterranean light environments-effects on structure and chemical composition of foliage and plant water relations. Env. Exp. Bot. 2001;45:165–178. doi: 10.1016/S0098-8472(01)00073-9. PubMed DOI
Elfellah M.S., Akhter M.H., Khan M.T. Anti-hyperglycaemic effect of an extract of Myrtus communis in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 1984;11:275–281. doi: 10.1016/0378-8741(84)90073-4. PubMed DOI
Cruciani S., Santaniello S., Garroni G., Fadda A., Balzano F., Bellu E., Sarais G., Fais G., Mulas M., Maioli M. Myrtus Polyphenols, from Antioxidants to Anti-Inflammatory Molecules: Exploring a Network Involving Cytochromes P450 and Vitamin D. Molecules. 2019;24:1515. doi: 10.3390/molecules24081515. PubMed DOI PMC
Saeidi S., Amini Boroujeni N., Ahmadi H., Hassanshahian M. Antibacterial Activity of Some Plant Extracts Against Extended- Spectrum Beta-Lactamase Producing Escherichia coli Isolates. Jundishapur J. Microbiol. 2015;8:e15434. doi: 10.5812/jjm.15434. PubMed DOI PMC
Rossi A., Di Paola R., Mazzon E., Genovese T., Caminiti R., Bramanti P., Pergola C., Koeberle A., Werz O., Sautebin L., et al. Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J. Pharmacol. Exp. Ther. 2009;329:76–86. doi: 10.1124/jpet.108.143214. PubMed DOI
Amira S., Dade M., Schinella G., Ríos J.L. Anti-inflammatory, anti-oxidant, and apoptotic activities of four plant species used in folk medicine in the Mediterranean basin. Pak. J. Pharm. Sci. 2012;25:65–72. PubMed
Cruciani S., Santaniello S., Fadda A., Sale L., Sarais G., Sanna D., Mulas M., Ginesu G.C., Cossu M.L., Serra P.A., et al. Extracts from Myrtle Liqueur Processing Waste Modulate Stem Cells Pluripotency under Stressing Conditions. Biomed Res. Int. 2019;2019:5641034. doi: 10.1155/2019/5641034. PubMed DOI PMC
Fiorini-Puybaret C., Aries M.-F., Fabre B., Mamatas S., Luc J., Degouy A., Ambonati M., Mejean C., Poli F. Pharmacological Properties of Myrtacine® and Its Potential Value in Acne Treatment. Planta Med. 2011;77:1582–1589. doi: 10.1055/s-0030-1270955. PubMed DOI
Lu C., Fuchs E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb. Perspect. Med. 2014;4:a015222. doi: 10.1101/cshperspect.a015222. PubMed DOI PMC
Naylor E.C., Watson R.E., Sherratt M.J. Molecular aspects of skin ageing. Maturitas. 2011;69:249–256. doi: 10.1016/j.maturitas.2011.04.011. PubMed DOI
Trautinger F. Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clin. Exp. Dermatol. 2001;26:573–577. doi: 10.1046/j.1365-2230.2001.00893.x. PubMed DOI
Shin J.W., Kwon S.H., Choi J.Y., Na J.I., Huh C.H., Choi H.R., Park K.C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019;20:2126. doi: 10.3390/ijms20092126. PubMed DOI PMC
Quan T., He T., Kang S., Voorhees J.J., Fisher G.J. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am. J. Pathol. 2004;165:741–751. doi: 10.1016/S0002-9440(10)63337-8. PubMed DOI PMC
Maioli M., Rinaldi S., Pigliaru G., Santaniello S., Basoli V., Castagna A., Fontani V., Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016;6:28682. doi: 10.1038/srep28682. PubMed DOI PMC
Ahmed A.S., Sheng M.H., Wasnik S., Baylink D.J., Lau K.W. Effect of aging on stem cells. World J. Exp. Med. 2017;7:1–10. doi: 10.5493/wjem.v7.i1.1. PubMed DOI PMC
Rinaldi S., Maioli M., Pigliaru G., Castagna A., Santaniello S., Basoli V., Fontani V., Ventura C. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 2014;4:6373. doi: 10.1038/srep06373. PubMed DOI PMC
Park I.K., Morrison S.J., Clarke M.F. Bmi1, stem cells, and senescence regulation. J. Clin. Invest. 2004;113:175–179. doi: 10.1172/JCI200420800. PubMed DOI PMC
Wang Y., Lauer M.E., Anand S., Mack J.A., Maytin E.V. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J. Biol. Chem. 2014;289:32253–32265. doi: 10.1074/jbc.M114.578377. PubMed DOI PMC
Bellu E., Garroni G., Balzano F., Satta R., Montesu M.A., Kralovic M., Fedacko J., Cruciani S., Maioli M. Isolating stem cells from skin: Designing a novel highly efficient non-enzymatic approach. Physiol. Res. 2019;68:S385–S388. doi: 10.33549/physiolres.934373. PubMed DOI
Torreggiani E., Rossini M., Bononi I., Pietrobon S., Mazzoni E., Iaquinta M.R., Feo C., Rotondo J.C., Rizzo P., Tognon M., et al. Protocol for the long-term culture of human primary keratinocytes from the normal colorectal mucosa. J. Cell Physiol. 2019;234:9895–9905. doi: 10.1002/jcp.28300. PubMed DOI
Wei J.C.J., Edwards G.A., Martin D.J., Huang H., Crichton M.L., Kendall M.A.F. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans. Sci. Rep. 2017;7:15885. doi: 10.1038/s41598-017-15830-7. PubMed DOI PMC
Cruciani S., Garroni G., Ginesu G.C., Fadda A., Ventura C., Maioli M. Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. Biology. 2020;9:57. doi: 10.3390/biology9030057. PubMed DOI PMC
Maioli M., Rinaldi S., Santaniello S., Castagna A., Pigliaru G., Delitala A., Lotti Margotti M., Bagella L., Fontani V., Ventura C. Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age (Dordr) 2014;36:9–20. doi: 10.1007/s11357-013-9537-8. PubMed DOI PMC
Maioli M., Contini G., Santaniello S., Bandiera P., Pigliaru G., Sanna R., Rinaldi S., Delitala A.P., Montella A., Bagella L., et al. Amniotic fluid stem cells morph into a cardiovascular lineage: Analysis of a chemically induced cardiac and vascular commitment. Drug Des. Devel. 2013;7:1063–1073. PubMed PMC
Maioli M., Basoli V., Santaniello S., Cruciani S., Delitala A.P., Pinna R., Milia E., Grillari-Voglauer R., Fontani V., Rinaldi S., et al. Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells Int. 2016:2056416. doi: 10.1155/2016/2056416. PubMed DOI PMC
Rebelo S.P., Costa R., Silva M.M., Marcelino P., Brito C., Alves P.M. Three-dimensional co-culture of human hepatocytes and mesenchymal stem cells: Improved functionality in long-term bioreactor cultures. J. Tissue Eng. Regen. Med. 2017;11:2034–2045. doi: 10.1002/term.2099. PubMed DOI
Cruciani S., Santaniello S., Montella A., Ventura C., Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J. Stem Cells. 2019;11:464–475. doi: 10.4252/wjsc.v11.i8.464. PubMed DOI PMC
D’Arcangelo D., Tinaburri L., Dellambra E. The Role of p16INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int. J. Mol. Sci. 2017;18:1591. doi: 10.3390/ijms18071591. PubMed DOI PMC
Rando T.A. Stem cells, ageing and the quest for immortality. Nature. 2006;441:1080–1086. doi: 10.1038/nature04958. PubMed DOI
Klapper W., Parwaresch R., Krupp G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev. 2001;122:695–712. doi: 10.1016/S0047-6374(01)00223-8. PubMed DOI
Tzellos T.G., Klagas I., Vahtsevanos K., Triaridis S., Printza A., Kyrgidis A., Karakiulakis G., Zouboulis C.C., Papakonstantinou E. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp. Dermatol. 2009;18:1028–1035. doi: 10.1111/j.1600-0625.2009.00889.x. PubMed DOI
Itahana K., Zou Y., Itahana Y., Martinez J.L., Beausejour C., Jacobs J.J., Van Lohuizen M., Band V., Campisi J., Dimri G.P. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell Biol. 2003;23:389–401. doi: 10.1128/MCB.23.1.389-401.2003. PubMed DOI PMC
Frankart A., Malaisse J., De Vuyst E., Minner F., de Rouvroit C.L., Poumay Y. Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface. Exp. Derm. 2012;21:871–875. doi: 10.1111/exd.12020. PubMed DOI
Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol. Biotechnol. 2018;60:506–532. doi: 10.1007/s12033-018-0084-5. PubMed DOI
Fathi-Azarbayjani A., Qun L., Chan Y.W., Chan S.Y. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. Aaps. Pharm. Sci. Tech. 2010;11:1164–1170. doi: 10.1208/s12249-010-9475-z. PubMed DOI PMC
Nanomaterials in Skin Regeneration and Rejuvenation
Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence