Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
33858339
PubMed Central
PMC8050918
DOI
10.1186/s12864-021-07589-z
PII: 10.1186/s12864-021-07589-z
Knihovny.cz E-resources
- Keywords
- Annotation, Assembly, Eudiplozoon nipponicum, Mass spectrometry, Monogenea, NGS, Secretome, Transcriptome,
- MeSH
- Molecular Sequence Annotation MeSH
- Chromatography, Liquid MeSH
- Phylogeny MeSH
- Carps * genetics MeSH
- Gene Expression Profiling MeSH
- Tandem Mass Spectrometry MeSH
- Transcriptome MeSH
- Trematoda * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host-parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). RESULTS: RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). CONCLUSIONS: In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts.
See more in PubMed
Ogawa K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda) Parasitology. 2014;142(1):178–195. doi: 10.1017/S0031182014000808. PubMed DOI
Kawatsu H. Studies on the anemia of fish-IX. Nippon Suisan Gakkaishi. 1978;44(12):1315–1319. doi: 10.2331/suisan.44.1315. DOI
Bakke TA, Harris PD, Hansen H, Cable J, Hansen LP. Susceptibility of Baltic and East Atlantic salmon Salmo salar stocks to Gyrodactylus salaris (Monogenea) Dis Aquat Org. 2004;58(2-3):171–177. doi: 10.3354/dao058171. PubMed DOI
Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA, Bachmann L, et al. The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes: Monogenea), a pathogen of Atlantic salmon (Salmo salar) Parasitology. 2006;134(5):739–747. doi: 10.1017/S0031182006002010. PubMed DOI
Plaisance L, Huyse T, Littlewood DTJ, Bakke TA, Bachmann L. The complete mitochondrial DNA sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes: Monogenea), a parasite of grayling (Thymallus thymallus) Mol Biochem Parasitol. 2007;154(2):190–194. doi: 10.1016/j.molbiopara.2007.04.012. PubMed DOI
Zhang J, Wu X, Li Y, Zhao M, Xie M, Li A. The complete mitochondrial genome of Neobenedenia melleni (Platyhelminthes: Monogenea): mitochondrial gene content, arrangement and composition compared with two Benedenia species. Mol Biol Rep. 2014;41(10):6583–6589. doi: 10.1007/s11033-014-3542-6. PubMed DOI
Kang S, Kim J, Lee J, Kim S, Min G-S, Park J-K. The complete mitochondrial genome of an ectoparasitic monopisthocotylean fluke Benedenia hoshinai (Monogenea: Platyhelminthes) Mitochondrial DNA. 2012;23(3):176–178. doi: 10.3109/19401736.2012.668900. PubMed DOI
Zhang J, Wu X, Xie M, Li A. The complete mitochondrial genome of Pseudochauhanea macrorchis (Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in Polyopisthocotylea. Mol Biol Rep. 2012;39(8):8115–8125. doi: 10.1007/s11033-012-1659-z. PubMed DOI
Hahn C, Fromm B, Bachmann L. Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata. Genome Biol Evol. 2014;6(5):1105–1117. doi: 10.1093/gbe/evu078. PubMed DOI PMC
Konczal M, Przesmycka KJ, Mohammed RS, Phillips KP, Camara F, Chmielewski S, Hahn C, Guigo R, Cable J, Radwan J. Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Mol Ecol. 2020;29(8):1494–1507. doi: 10.1111/mec.15421. PubMed DOI
Coghlan A, Tyagi R, Cotton JA, Holroyd N, Rosa BA, Tsai I, et al. Comparative genomics of the major parasitic worms. Nat Genet. 2019;51(1):163–174. doi: 10.1038/s41588-018-0262-1. PubMed DOI PMC
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: approach to characterisation of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea) PLoS One. 2020;15(6):e0231681. doi: 10.1371/journal.pone.0231681. PubMed DOI PMC
Valigurová A, Hodová I, Sonnek R, Koubková B, Gelnar M. Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialised adaptation for ectoparasitic lifestyle. Parasitol Res. 2011;108(2):383–394. doi: 10.1007/s00436-010-2077-6. PubMed DOI
Hodová I, Matějusová I, Gelnar M. The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitising carp (Cyprinus carpio L.) Cent Eur J Biol. 2010;5(5):702–709. doi: 10.2478/s11535-010-0040-2. DOI
Denis A, Gabrion C, Lambert A. Présence en France de deux parasites d’origine est-asiatique : Diplozoon nipponicum Goto, 1891 (Monogenea) et Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda) chez Cyprinus carpio (Teleostei, Cyprinidae) Bull Fr Piscic. 1983;289(289):128–134. doi: 10.1051/kmae:1983012. DOI
Matějusová I, Koubková B, D’Amelio S, Cunningham CO. Genetic characterisation of six species of diplozoids (Monogenea; Diplozoidae) Parasitology. 2001;123(5):465–474. doi: 10.1017/S0031182001008617. PubMed DOI
The Food and Agriculture Organization of the United Nations, Fisheries Division. FishStatJ - Software for Fishery and Aquaculture Statistical Time Series. Available from http://www.fao.org/fishery/statistics/software/fishstatj/en. Accessed 10 December 2020.
Matějusová I, Koubková B, Cunningham CO. Identification of European diplozoids (Monogenea, Diplozoinae) by restriction digestion of the ribosomal RNA internal transcribed spacer. J Parasitol. 2004;90(4):817–822. doi: 10.1645/GE-138R. PubMed DOI
Košková E, Matějusová I, Civáňová K, Koubková B. Ethanol-fixed material used for both classical and molecular identification purposes: Eudiplozoon nipponicum (Monogenea: Diplozoidae) as a case parasite species. Parasitol Res. 2010;107(4):909–914. doi: 10.1007/s00436-010-1949-0. PubMed DOI
Ilgová J, Jedličková L, Dvořáková H, Benovics M, Mikeš L, Janda L, Vorel J, Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci Rep. 2017;7(1):17526. doi: 10.1038/s41598-017-17598-2. PubMed DOI PMC
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, Žárský V, Mikeš L. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasites Vectors. 2018;11(1):142. doi: 10.1186/s13071-018-2666-2. PubMed DOI PMC
Jedličková L, Dvořáková H, Kašný M, Ilgová J, Potěšil D, Zdráhal Z, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae) Parasitology. 2016;143(4):494–506. doi: 10.1017/S0031182015001808. PubMed DOI
Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, Mikeš L, Potěšil D, Zdráhal Z, Dvořák J, Gelnar M, Kašný M. Identification and partial characterisation of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea) Parasite. 2018;25:61. doi: 10.1051/parasite/2018062. PubMed DOI PMC
Jedličková L, Dvořák J, Hrachovinová I, Ulrychová L, Kašný M, Mikeš L. A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro. Int J Parasitol. 2019;49(5):337–336. doi: 10.1016/j.ijpara.2018.11.010. PubMed DOI
Ilgová J, Kavanová L, Matiašková K, Salát J, Kašný M. Effect of cysteine peptidase inhibitor of Eudiplozoon nipponicum (Monogenea) on cytokine expression of macrophages in vitro. Mol Biochem Parasitol. 2020;253:111248. doi: 10.1016/j.molbiopara.2019.111248. PubMed DOI
Nishihira T, Urabe M. Morphological and molecular studies of Eudiplozoon nipponicum (Goto, 1891) and Eudiplozoon kamegaii sp. n. (Monogenea; Diplozoidae) Folia Parasitol. 2020;67:018. doi: 10.14411/fp.2020.018. PubMed DOI
Chmúrčiaková N, Kašný M, Orosová M. Cytogenetics of Eudiplozoon nipponicum (Monogenea, Diplozoidae): karyotype, spermatocyte division and 18S rDNA location. Parasitol Int. 2020;76:102031. doi: 10.1016/j.parint.2019.102031. PubMed DOI
Konstanzová V, Koubková B, Kašný M, Ilgová J, Dzika E, Gelnar M. Excretory system of representatives from family Diplozoidae (Monogenea) Parasitol Res. 2016;115(4):1493–1500. doi: 10.1007/s00436-015-4882-4. PubMed DOI
Schabussova I, Koubková B, Gelnar M, Schabuss M, Horák P. Surface carbohydrates of Eudiplozoon nipponicum pre- and post-fusion. J Helminthol. 2004;78(1):63–68. doi: 10.1079/JOH2003212. PubMed DOI
Zurawski TH, Mousley A, Mair GR, Brennan GP, Maule AG, Gelnar M, Halton DW. Immunomicroscopical observations on the nervous system of adult Eudiplozoon nipponicum (Monogenea: Diplozoidae) Int J Parasitol. 2001;31(8):783–792. doi: 10.1016/s0020-7519(01)00192-8. PubMed DOI
Zurawski TH, Mousley A, Maule AG, Gelnar M, Halton DW. Cytochemical studies of the neuromuscular systems of the diporpa and juvenile stages of Eudiplozoon nipponicum (Monogenea: Diplozoidae) Parasitology. 2003;126(4):349–357. doi: 10.1017/S0031182002002871. PubMed DOI
Zurawski TH, Mair GR, Maule AG, Gelnar M, Halton DW. Microscopical evaluation of neural connectivity between paired stages of Eudiplozoon nipponicum (Monogenea: Diplozoidae) J Parasitol. 2003;89(1):198–200. doi: 10.1645/0022-3395(2003)089[0198:MEONCB]2.0.CO;2. PubMed DOI
Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol. 2015;31(10):477–489. doi: 10.1016/j.pt.2015.06.009. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Halton DW, Stranock SD, Hardcastle A. Vitelline cell development in monogenean parasites. Z Parasitenkd. 1974;45(1):45–61. doi: 10.1007/BF00636526. PubMed DOI
Dvořák J, Horn M. Serine proteases in schistosomes and other trematodes. Int J Parasitol. 2018;48(5):333–344. doi: 10.1016/j.ijpara.2018.01.001. PubMed DOI
Chaimon S, Limpanont Y, Reamtong O, Ampawong S, Phuphisut O, Chusongsang P, Ruangsittichai J, Boonyuen U, Watthanakulpanich D, O’Donoghue AJ, Caffrey CR, Adisakwattana P. Molecular characterisation and functional analysis of the Schistosoma mekongi Ca2+−dependent cysteine protease (calpain) Parasit Vectors. 2019;12(1):383. doi: 10.1186/s13071-019-3639-9. PubMed DOI PMC
Perner J, Gasser RB, Oliveira PL, Kopáček P. Haem biology in metazoan parasites – ‘The bright side of haem’. Trends Parasitol. 2019;35(3):213–225. doi: 10.1016/j.pt.2019.01.001. PubMed DOI
Ponka P. Cell biology of heme. Am J Med Sci. 1999;318(4):241–256. doi: 10.1097/00000441-199910000-00004. PubMed DOI
Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch Biochem Biophys. 2008;474(2):238–251. doi: 10.1016/j.abb.2008.02.015. PubMed DOI
Reddi AR, Hamza I. Heme mobilization in animals: a metallolipid’s journey. Acc Chem Res. 2016;49(6):1104–1110. doi: 10.1021/acs.accounts.5b00553. PubMed DOI PMC
Sonenshine DE, Roe RM. Biology of ticks, volume 1. 2. New York: Oxford University Press; 2013.
Smyth JD, Halton DW. The Monogenean – physiology. In: Smyth JD, Halton DW, editors. The physiology of Trematodes. Cambridge: Cambridge University Press; 1983. pp. 289–320.
Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci. 2008;33(12):601–608. doi: 10.1016/j.tibs.2008.09.001. PubMed DOI
Konstanzová V, Koubková B, Kašný M, Ilgová J, Dzika E, Gelnar M. Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea) Parasitol Res. 2015;114(4):1485–1494. doi: 10.1007/s00436-015-4331-4. PubMed DOI
Toh SQ, Gobert GN, Martínez DM, Jones MK. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. FEBS J. 2015;282(18):3632–3646. doi: 10.1111/febs.13368. PubMed DOI
Glanfield A, McManus DP, Anderson GJ, Jones MK. Pumping iron: a potential target for novel therapeutics against schistosomes. Trends Parasitol. 2007;23(12):583–588. doi: 10.1016/j.pt.2007.08.018. PubMed DOI PMC
Galay RL, Aung KM, Umemiya-Shirafuji R, Maeda H, Matsuo T, Kawaguchi H, et al. Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. J Exp Biol. 2013;216(10):1905–15. 10.1242/jeb.081240. PubMed
Perner J, Kotál J, Hatalová T, Urbanová V, Bartošová-Sojková P, Brophy PM, et al. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem Mol Biol. 2018;95:44–54. 10.1016/j.ibmb.2018.02.002. PubMed
Perally S, Lacourse EJ, Campbell AM, Brophy PM. Heme transport and detoxification in nematodes: subproteomics evidence of differential role of glutathione transferases. J Proteome Res. 2008;7(10):4557–4565. doi: 10.1021/pr800395x. PubMed DOI
Wang Q, Da’dara AA, Skelly PJ. The human blood parasite Schistosoma mansoni expresses extracellular tegumental calpains that cleave the blood clotting protein fibronectin. Sci Rep. 2017;7(1):12912. doi: 10.1038/s41598-017-13141-5. PubMed DOI PMC
Sojka D, Franta Z, Frantová H, Bartošová P, Horn M, Váchová J, et al. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). J Biol Chem. 2012;287(25):21152–63. 10.1074/jbc.M112.347922. PubMed PMC
Grams R, Adisakwattana P, Ritthisunthorn N, Eursitthichai V, Vichasri-Grams S, Viyanant V. The saposin-like proteins 1, 2, and 3 of Fasciola gigantica. Mol Biochem Parasitol. 2006;148(2):133–143. doi: 10.1016/j.molbiopara.2006.03.007. PubMed DOI
McCarthy E, Stack C, Donnelly SM, Doyle S, Mann VH, Brindley PJ, et al. Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol. 2004;34(6):703–14. 10.1016/j.ijpara.2004.01.008. PubMed
Smith HL, Pavasovic A, Surm JM, Phillips MJ, Prentis PJ. Evidence for a large expansion and subfunctionalization of globin genes in sea anemones. Genome Biol Evol. 2018;10(8):1892–1901. doi: 10.1093/gbe/evy128. PubMed DOI PMC
Bell A, Monaghan P, Page AP. Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action. Int J Parasitol. 2006;36(3):261–276. doi: 10.1016/j.ijpara.2005.11.003. PubMed DOI
Floudas A, Cluxton CD, Fahel J, Khan AR, Saunders SP, Amu S, et al. Composition of the Schistosoma mansoni worm secretome: identification of immune modulatory Cyclophilin a. PLoS Negl Trop Dis. 2017;11(10):e0006012. 10.1371/journal.pntd.0006012. PubMed PMC
Dalton JP, Robinson MW, Mulcahy G, O’Neill SM, Donnelly S. Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol. 2013;195(3-4):272–85. 10.1016/j.vetpar.2013.04.008. PubMed
Sandiford SL, Dong Y, Pike A, Blumberg BJ, Bahia AC, Dimopoulos G. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium antagonist. PLoS Pathog. 2015;11(2):e1004631. doi: 10.1371/journal.ppat.1004631. PubMed DOI PMC
Reimers N, Homann A, Höschler B, Langhans K, Wilson RA, Pierrot C, et al. Drug-induced exposure of Schistosoma mansoni antigens SmCD59a and SmKK7. PLoS Negl Trop Dis. 2015;9(3):e0003593. 10.1371/journal.pntd.0003593. PubMed PMC
Egesa M, Lubyayi L, Jones FM, van Diepen A, Chalmers IW, Tukahebwa EM, et al. Antibody responses to Schistosoma mansoni schistosomula antigens. Parasite Immunol. 2018;40(12):e12591. 10.1111/pim.12591. PubMed PMC
Ramos-Benítez MJ, Ruiz-Jiménez C, Aguayo V, Espino AM. Recombinant Fasciola hepatica fatty acid binding protein suppresses toll-like receptor stimulation in response to multiple bacterial ligands. Sci Rep. 2017;7(1):5455. doi: 10.1038/s41598-017-05735-w. PubMed DOI PMC
Martin I, Cabán-Hernández K, Figueroa-Santiago O, Espino AM. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by lipopolysaccharide in vitro and in vivo. J Immunol. 2015;194:3924–3936. doi: 10.4049/jimmunol.1401182. PubMed DOI PMC
Chiumiento L, Bruschi F. Enzymatic antioxidant systems in helminth parasites. Parasitol Res. 2009;103(3):593–603. doi: 10.1007/s00436-009-1483-0. PubMed DOI
Tararam CA, Farias LP, Wilson RA, Leite LC de C. Schistosoma mansoni Annexin 2: molecular characterisation and immunolocalisation. Exp Parasitol. 2010;126(2):146–155. doi: 10.1016/j.exppara.2010.04.008. PubMed DOI
Yan H-L, Xue G, Mei Q, Ding F-X, Wang Y-Z, Sun S-H. Calcium-dependent proapoptotic effect of Taenia solium metacestodes annexin B1 on human eosinophils: a novel strategy to prevent host immune response. Int J Biochem Cell Biol. 2008;40(10):2151–63. 10.1016/j.biocel.2008.02.018. PubMed
Sahoo S, Murugavel S, Devi IK, Vedamurthy GV, Gupta SC, Singh BP, Joshi P. Glyceraldehyde-3-phosphate dehydrogenase of the parasitic nematode Haemonchus contortus binds to complement C3 and inhibits its activity. Parasite Immunol. 2013;35(12):457–467. doi: 10.1111/pim.12058. PubMed DOI
Rajan P, Mishra PKK, Joshi P. Defining the complement C3 binding site and the antigenic region of Haemonchus contortus GAPDH. Parasite Immunol. 2019;41(2):e12611. doi: 10.1111/pim.12611. PubMed DOI
Wilson RA, Wright JM, de Castro-Borges W, Parker-Manuel SJ, Dowle AA, Ashton PD, et al. Exploring the Fasciola hepatica tegument proteome. Int J Parasitol. 2011;41(13-14):1347–59. 10.1016/j.ijpara.2011.08.003. PubMed
Benovics M, Desdevises Y, Vukić J, Šanda R, Šimková A. The phylogenetic relationships and species richness of host-specific Dactylogyrus parasites shaped by the biogeography of Balkan cyprinids. Sci Rep. 2018;8(1):13006. doi: 10.1038/s41598-018-31382-w. PubMed DOI PMC
Rohlenová K, Morand S, Hyršl P, Tolarová S, Flajšhans M, Šimková A. Are fish immune systems really affected by parasites? An immunoecological study of common carp (Cyprinus carpio) Parasit Vectors. 2011;4(1):120. doi: 10.1186/1756-3305-4-120. PubMed DOI PMC
Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood “n” guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20(5):241–248. doi: 10.1016/j.pt.2004.03.004. PubMed DOI
Horn M, Nussbaumerová M, Šanda M, Kovářová Z, Srba J, Franta Z, Sojka D, Bogyo M, Caffrey CR, Kopáček P, Mareš M. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol. 2009;16(10):1053–1063. doi: 10.1016/j.chembiol.2009.09.009. PubMed DOI PMC
Holtof M, Lenaerts C, Cullen D, Vanden BJ. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res. 2019;377(3):397–414. doi: 10.1007/s00441-019-03031-9. PubMed DOI
Jones MK, McManus DP, Sivadorai P, Glanfield A, Moertel L, Belli SI, et al. Tracking the fate of iron in early development of human blood flukes. Int J Biochem Cell Biol. 2007;39(9):1646–1658. doi: 10.1016/j.biocel.2007.04.017. PubMed DOI PMC
Dietzel J, Hirzmann J, Preis D, Symmons P, Kunz W. Ferritins of Schistosoma mansoni: sequence comparison and expression in female and male worms. Mol Biochem Parasitol. 1992;50(2):245–254. doi: 10.1016/0166-6851(92)90221-5.a. PubMed DOI
Glanfield A, Mcmanus DP, Smyth DJ, Lovas EM, Loukas A, Gobert GN, et al. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum. PLoS Negl Trop Dis. 2010;4(11):e884. doi: 10.1371/journal.pntd.0000884. PubMed DOI PMC
Cabán-Hernández K, Gaudier JF, Espino AM. Characterization and differential expression of a ferritin protein from Fasciola hepatica. Mol Biochem Parasitol. 2012;182(1-2):54–61. doi: 10.1016/j.molbiopara.2011.12.005. PubMed DOI PMC
Tang Y, Cho PY, Kim TI, Hong S-J. Clonorchis sinensis: molecular cloning, enzymatic activity, and localization of yolk ferritin. J Parasitol. 2006;92(6):1275–1280. doi: 10.1645/GE-867R.1. PubMed DOI
Figueroa-Santiago O, Espino AM. Fasciola hepatica fatty acid binding protein induces the alternative activation of human macrophages. Infect Immun. 2014;82(12):5005–5012. doi: 10.1128/IAI.02541-14. PubMed DOI PMC
Morphew RM, Wilkinson TJ, MacKintosh N, Jahndel V, Paterson S, McVeigh P, et al. Exploring and expanding the fatty-acid-binding protein superfamily in Fasciola species. J Proteome Res. 2016;15(9):3308–3321. doi: 10.1021/acs.jproteome.6b00331. PubMed DOI
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement evasion: an effective strategy that parasites utilise to survive in the host. Front Microbiol. 2019;10:532. doi: 10.3389/fmicb.2019.00532. PubMed DOI PMC
Gonzalez SF, Buchmann K, Nielsen ME. Complement expression in common carp (Cyprinus carpio L.) during infection with Ichthyophthirius multifiliis. Dev Comp Immunol. 2007;31(6):576–586. doi: 10.1016/j.dci.2006.08.010. PubMed DOI
Buchmann K. Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes: Monogenea) Dis Aquat Org. 1998;32(3):195–200. doi: 10.3354/dao032195. PubMed DOI
Harris PD, Soleng A, Bakke TA. Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement. Parasitology. 1998;117(2):137–143. doi: 10.1017/s003118209800287x. PubMed DOI
Young ND, Jex AR, Cantacessi C, Hall RS, Campbell BE, Spithill TW, Tangkawattana S, Tangkawattana P, Laha T, Gasser RB. A portrait of the transcriptome of the neglected trematode, Fasciola gigantica - biological and biotechnological implications. PLoS Negl Trop Dis. 2011;5(2):e1004. doi: 10.1371/journal.pntd.0001004. PubMed DOI PMC
Cantacessi C, Mulvenna J, Young ND, Kašný M, Horaká P, Aziz A, et al. A deep exploration of the transcriptome and “excretory/secretory” proteome of adult Fascioloides magna. Mol Cell Proteomics. 2012;11(11):1340–1353. doi: 10.1074/mcp.M112.019844. PubMed DOI PMC
FastQC. A quality control tool for high throughput sequence data. Available from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 10 December 2020.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–1111. doi: 10.1093/bioinformatics/btp120. PubMed DOI PMC
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–1092. doi: 10.1093/bioinformatics/bts094. PubMed DOI PMC
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016;26(8):1134–1144. doi: 10.1101/gr.196469.115. PubMed DOI PMC
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–1067. doi: 10.1093/bioinformatics/btm071. PubMed DOI
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35(3):543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
sff2fastq. Available from https://github.com/indraniel/sff2fastq. Accessed 10 December 2020.
Marinier E, Brown DG, McConkey BJ. Pollux: platform independent error correction of single and mixed genomes. BMC Bioinformatics. 2015;16(1):10. doi: 10.1186/s12859-014-0435-6. PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2018;46(D1):8–13. doi: 10.1093/nar/gkx1095. PubMed DOI PMC
Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):343–350. doi: 10.1093/nar/gkv1118. PubMed DOI PMC
Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2020:gkaa1100. 10.1093/nar/gkaa1100.
Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol. 2016;1374:23–54. doi: 10.1007/978-1-4939-3167-5_2. PubMed DOI
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42. 10.1093/nar/28.1.235. PubMed PMC
Mashima J, Kodama Y, Fujisawa T, Katayama T, Okuda Y, Kaminuma E, et al. DNA data bank of Japan. Nucleic Acids Res. 2017;45(D1):25–31. 10.1093/nar/gkw1001. PubMed PMC
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):182–185. doi: 10.1093/nar/gkm321. PubMed DOI PMC
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. 10.1093/bioinformatics/btu031. PubMed PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC