• This record comes from PubMed

Aerogels for Biomedical, Energy and Sensing Applications

. 2021 Dec 14 ; 7 (4) : . [epub] 20211214

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
TO01000311 Iceland, Liechtenstein and Norway through the EEA Grants and the Technology Agency of the Czech Republic

The term aerogel is used for unique solid-state structures composed of three-dimensional (3D) interconnected networks filled with a huge amount of air. These air-filled pores enhance the physicochemical properties and the structural characteristics in macroscale as well as integrate typical characteristics of aerogels, e.g., low density, high porosity and some specific properties of their constituents. These characteristics equip aerogels for highly sensitive and highly selective sensing and energy materials, e.g., biosensors, gas sensors, pressure and strain sensors, supercapacitors, catalysts and ion batteries, etc. In recent years, considerable research efforts are devoted towards the applications of aerogels and promising results have been achieved and reported. In this thematic issue, ground-breaking and recent advances in the field of biomedical, energy and sensing are presented and discussed in detail. In addition, some other perspectives and recent challenges for the synthesis of high performance and low-cost aerogels and their applications are also summarized.

See more in PubMed

Kurundawade S.R., Malladi R.S., Kulkarni R.M., Khan A.A.P. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Natural aerogels for pollutant removal; pp. 19–32.

Liu H., Du H., Zheng T., Xu T., Liu K., Ji X., Zhang X., Si C. Recent progress in cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 2021;426:130817. doi: 10.1016/j.cej.2021.130817. DOI

Amor N., Noman M.T., Petru M. Classification of Textile Polymer Composites: Recent Trends and Challenges. Polymers. 2021;13:2592. doi: 10.3390/polym13162592. PubMed DOI PMC

Ashraf M.A., Wiener J., Farooq A., Saskova J., Noman M.T. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI

Yang M., Choy K.-l. A nature-derived, flexible and three dimensional (3D) nano-composite for chronic wounds pH monitoring. Mater. Lett. 2021;288:129335. doi: 10.1016/j.matlet.2021.129335. DOI

Ahmad V., Ahmad A., Khan S.A., Ahmad A., Abuzinadah M.F., Karim S., Jamal Q.M.S. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Biomedical applications of aerogel; pp. 33–48.

Siddique J.A., Ansari S.P., Yadav M. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Carbon aerogel composites for gas sensing; pp. 49–73.

Qin L., Yang D., Zhang M., Zhao T., Luo Z., Yu Z.-Z. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. J. Colloid Interface Sci. 2021;589:264–274. doi: 10.1016/j.jcis.2020.12.102. PubMed DOI

Wang Z., Tammela P., Strømme M., Nyholm L. Cellulose-based supercapacitors: Material and performance considerations. Adv. Energy Mater. 2017;7:1700130. doi: 10.1002/aenm.201700130. DOI

Asmussen R.M., Matyáš J., Qafoku N.P., Kruger A.A. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. J. Hazard. Mater. 2019;379:119364. doi: 10.1016/j.jhazmat.2018.04.081. PubMed DOI

Noman M.T., Amor N., Petru M., Mahmood A., Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers. 2021;13:1227. doi: 10.3390/polym13081227. PubMed DOI PMC

Yang J., Zhang E., Li X., Zhang Y., Qu J., Yu Z.-Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon. 2016;98:50–57. doi: 10.1016/j.carbon.2015.10.082. DOI

Ansari S.P., Husain A., Shariq M.U., Ansari M.O. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Conducting polymer-based aerogels for energy and environmental remediation; pp. 75–86.

Shi K., Huang X., Sun B., Wu Z., He J., Jiang P. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy. 2019;57:450–458. doi: 10.1016/j.nanoen.2018.12.076. DOI

Jiang S., Zhang M., Jiang W., Xu Q., Yu J., Liu L., Liu L. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties. Carbohydr. Polym. 2020;247:116701. doi: 10.1016/j.carbpol.2020.116701. PubMed DOI

Noman M.T., Petru M., Louda P., Kejzlar P. Woven textiles coated with zinc oxide nanoparticles and their thermophysiological comfort properties. J. Nat. Fibers. 2021;18:1–14. doi: 10.1080/15440478.2020.1870621. DOI

Zhang X., Zhou J., Zheng Y., Wei H., Su Z. Graphene-based hybrid aerogels for energy and environmental applications. Chem. Eng. J. 2021;420:129700. doi: 10.1016/j.cej.2021.129700. DOI

Yang J., Li Y., Zheng Y., Xu Y., Zheng Z., Chen X., Liu W. Versatile aerogels for sensors. Small. 2019;15:1902826. doi: 10.1002/smll.201902826. PubMed DOI

Rashidi S., Esfahani J.A., Rashidi A. A review on the applications of porous materials in solar energy systems. Renew. Sustain. Energy Rev. 2017;73:1198–1210. doi: 10.1016/j.rser.2017.02.028. DOI

Noman M.T., Petru M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. doi: 10.1038/s41598-020-78305-2. PubMed DOI PMC

Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:17204. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC

Rashidi S., Esfahani J.A., Karimi N. Porous materials in building energy technologies-A review of the applications, modelling and experiments. Renew. Sustain. Energy Rev. 2018;91:229–247. doi: 10.1016/j.rser.2018.03.092. DOI

Jafari S., Derakhshankhah H., Alaei L., Fattahi A., Varnamkhasti B.S., Saboury A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019;109:1100–1111. doi: 10.1016/j.biopha.2018.10.167. PubMed DOI

Soorbaghi F.P., Isanejad M., Salatin S., Ghorbani M., Jafari S., Derakhshankhah H. Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomed. Pharmacother. 2019;111:964–975. doi: 10.1016/j.biopha.2019.01.014. PubMed DOI

Javadi A., Zheng Q., Payen F., Javadi A., Altin Y., Cai Z., Sabo R., Gong S. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl. Mater. Interfaces. 2013;5:5969–5975. doi: 10.1021/am400171y. PubMed DOI

Zhao S., Siqueira G., Drdova S., Norris D., Ubert C., Bonnin A., Galmarini S., Ganobjak M., Pan Z., Brunner S. Additive manufacturing of silica aerogels. Nature. 2020;584:387–392. doi: 10.1038/s41586-020-2594-0. PubMed DOI

Cai B., Hübner R., Sasaki K., Zhang Y., Su D., Ziegler C., Vukmirovic M.B., Rellinghaus B., Adzic R.R., Eychmüller A. Core–shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2018;57:2963–2966. doi: 10.1002/anie.201710997. PubMed DOI

Biener J., Stadermann M., Suss M., Worsley M.A., Biener M.M., Rose K.A., Baumann T.F. Advanced carbon aerogels for energy applications. Energy Environ. Sci. 2011;4:656–667. doi: 10.1039/c0ee00627k. DOI

Subrahmanyam K.S., Sarma D., Malliakas C.D., Polychronopoulou K., Riley B.J., Pierce D.A., Chun J., Kanatzidis M.G. Chalcogenide aerogels as sorbents for radioactive iodine. Chem. Mater. 2015;27:2619–2626. doi: 10.1021/acs.chemmater.5b00413. DOI

Wang X., Jana S.C. Synergistic hybrid organic–inorganic aerogels. ACS Appl. Mater. Interfaces. 2013;5:6423–6429. doi: 10.1021/am401717s. PubMed DOI

Ansari M.O., Khan A.A.P., Ansari M.S., Khan A., Kulkarni R.M., Bhamare V.S. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Aerogel and its composites: Fabrication and properties; pp. 1–17.

Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Berardi U. The benefits of using aerogel-enhanced systems in building retrofits. Energy Procedia. 2017;134:626–635. doi: 10.1016/j.egypro.2017.09.576. DOI

Gurav J.L., Jung I.-K., Park H.-H., Kang E.S., Nadargi D.Y. Silica aerogel: Synthesis and applications. J. Nanomater. 2010;2010:409310. doi: 10.1155/2010/409310. DOI

Liu Z.-H., Ding Y.-D., Wang F., Deng Z.-P. Thermal insulation material based on SiO2 aerogel. Constr. Build. Mater. 2016;122:548–555. doi: 10.1016/j.conbuildmat.2016.06.096. DOI

Hanif A., Diao S., Lu Z., Fan T., Li Z. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres–Mechanical and thermal insulating properties. Constr. Build. Mater. 2016;116:422–430. doi: 10.1016/j.conbuildmat.2016.04.134. DOI

Al Zaidi I.K., Demirel B., Atis C.D., Akkurt F. Investigation of mechanical and thermal properties of nano SiO2/hydrophobic silica aerogel co-doped concrete with thermal insulation properties. Struct. Concr. 2020;21:1123–1133. doi: 10.1002/suco.201900324. DOI

Biesmans G., Mertens A., Duffours L., Woignier T., Phalippou J. Polyurethane based organic aerogels and their transformation into carbon aerogels. J. Non-Cryst. Solids. 1998;225:64–68. doi: 10.1016/S0022-3093(98)00010-6. DOI

Lee J.-H., Park S.-J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon. 2020;163:1–18. doi: 10.1016/j.carbon.2020.02.073. DOI

Zhang S., Fu R., Wu D., Xu W., Ye Q., Chen Z. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels. Carbon. 2004;42:3209–3216. doi: 10.1016/j.carbon.2004.08.004. DOI

Krumm M., Pueyo C.L., Polarz S. Monolithic zinc oxide aerogels from organometallic sol−gel precursors. Chem. Mater. 2010;22:5129–5136. doi: 10.1021/cm1006907. DOI

Yue X., Xiang J., Chen J., Li H., Qiu Y., Yu X. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization. J. Mater. Sci. Technol. 2020;47:223–230. doi: 10.1016/j.jmst.2019.12.017. DOI

Mirtaghavi A., Luo J., Muthuraj R. Recent Advances in Porous 3D Cellulose Aerogels for Tissue Engineering Applications: A Review. J. Compos. Sci. 2020;4:152. doi: 10.3390/jcs4040152. DOI

Ko E., Kim H. Preparation of chitosan aerogel crosslinked in chemical and ionical ways by non-acid condition for wound dressing. Int. J. Biol. Macromol. 2020;164:2177–2185. doi: 10.1016/j.ijbiomac.2020.08.008. PubMed DOI

Wang Y., Xiang F., Wang W., Wang W., Su Y., Jiang F., Chen S., Riffat S. Sound absorption characteristics of KGM-based aerogel. Int. J. Low-Carbon Technol. 2020;15:450–457. doi: 10.1093/ijlct/ctaa005. DOI

Maleki H., Durães L., Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids. 2014;385:55–74. doi: 10.1016/j.jnoncrysol.2013.10.017. DOI

Noman M.T., Amor N., Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021:1–43. doi: 10.1080/10408436.2021.1886041. DOI

Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI

Amor N., Noman M.T., Petru M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021;11:12235. doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC

Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Qian F., Troksa A., Fears T.M., Nielsen M.H., Nelson A.J., Baumann T.F., Kucheyev S.O., Han T.Y.-J., Bagge-Hansen M. Gold aerogel monoliths with tunable ultralow densities. Nano Lett. 2019;20:131–135. doi: 10.1021/acs.nanolett.9b03445. PubMed DOI

Qian F., Lan P.C., Freyman M.C., Chen W., Kou T., Olson T.Y., Zhu C., Worsley M.A., Duoss E.B., Spadaccini C.M. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017;17:7171–7176. doi: 10.1021/acs.nanolett.7b02790. PubMed DOI

Yan P., Brown E., Su Q., Li J., Wang J., Xu C., Zhou C., Lin D. 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson’s ratio. Small. 2017;13:1701756. doi: 10.1002/smll.201701756. PubMed DOI

Xu X., Wang R., Nie P., Cheng Y., Lu X., Shi L., Sun J. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces. 2017;9:14273–14280. doi: 10.1021/acsami.7b02087. PubMed DOI

Schwertfeger F., Frank D., Schmidt M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids. 1998;225:24–29. doi: 10.1016/S0022-3093(98)00102-1. DOI

Carlson G., Lewis D., McKinley K., Richardson J., Tillotson T. Aerogel commercialization: Technology, markets and costs. J. Non-Cryst. Solids. 1995;186:372–379. doi: 10.1016/0022-3093(95)00069-0. DOI

Adhikary S.K., Ashish D.K., Rudžionis Ž. Aerogel based thermal insulating cementitious composites: A review. Energy Build. 2021;245:111058. doi: 10.1016/j.enbuild.2021.111058. DOI

Lei Y., Hu Z., Cao B., Chen X., Song H. Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide. Mater. Chem. Phys. 2017;187:183–190. doi: 10.1016/j.matchemphys.2016.11.064. DOI

Patil S.P., Shendye P., Markert B. Molecular dynamics simulations of silica aerogel nanocomposites reinforced by glass fibers, graphene sheets and carbon nanotubes: A comparison study on mechanical properties. Compos. Part B Eng. 2020;190:107884. doi: 10.1016/j.compositesb.2020.107884. DOI

Li Z., Gong L., Cheng X., He S., Li C., Zhang H. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016;99:349–355. doi: 10.1016/j.matdes.2016.03.063. DOI

Li Z., Cheng X., He S., Shi X., Gong L., Zhang H. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016;84:316–325. doi: 10.1016/j.compositesa.2016.02.014. DOI

Maleki H., Durães L., García-González C.A., Del Gaudio P., Portugal A., Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016;236:1–27. doi: 10.1016/j.cis.2016.05.011. PubMed DOI

Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Balram D., Lian K.-Y., Sebastian N., Al-Mubaddel F.S., Noman M.T. Bi-functional renewable biopolymer wrapped CNFs/Ag doped spinel cobalt oxide as a sensitive platform for highly toxic nitroaromatic compound detection and degradation. Chemosphere. 2021:132998. doi: 10.1016/j.chemosphere.2021.132998. PubMed DOI

Muñoz-Ruíz A., Escobar-García D.M., Quintana M., Pozos-Guillén A., Flores H. Synthesis and characterization of a new collagen-alginate aerogel for tissue engineering. J. Nanomater. 2019;2019:2875375. doi: 10.1155/2019/2875375. DOI

Osorio D.A., Lee B.E., Kwiecien J.M., Wang X., Shahid I., Hurley A.L., Cranston E.D., Grandfield K. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 2019;87:152–165. doi: 10.1016/j.actbio.2019.01.049. PubMed DOI

Reyes-Peces M.V., Pérez-Moreno A., de-Los-Santos D.M., Mesa-Díaz M.d.M., Pinaglia-Tobaruela G., Vilches-Pérez J.I., Fernández-Montesinos R., Salido M., de la Rosa-Fox N., Piñero M. Chitosan-GPTMS-Silica Hybrid Mesoporous Aerogels for Bone Tissue Engineering. Polymers. 2020;12:2723. doi: 10.3390/polym12112723. PubMed DOI PMC

Groult S., Buwalda S., Budtova T. Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. Eur. Polym. J. 2021;149:110386. doi: 10.1016/j.eurpolymj.2021.110386. DOI

Rostamitabar M., Subrahmanyam R., Gurikov P., Seide G., Jockenhoevel S., Ghazanfari S. Cellulose aerogel micro fibers for drug delivery applications. Mater. Sci. Eng. C. 2021;127:112196. doi: 10.1016/j.msec.2021.112196. PubMed DOI

De Marco I., Miranda S., Riemma S., Iannone R. LCA of starch aerogels for biomedical applications. Chem. Eng. Trans. 2016;49:319–324.

Saadatnia Z., Mosanenzadeh S.G., Chin M.M., Naguib H.E., Popovic M.R. Flexible, Air Dryable, and Fiber Modified Aerogel-Based Wet Electrode for Electrophysiological Monitoring. IEEE Trans. Biomed. Eng. 2020;68:1820–1827. doi: 10.1109/TBME.2020.3022615. PubMed DOI

Tetik H., Zhao K., Shah N., Lin D. 3D freeze-printed cellulose-based aerogels: Obtaining truly 3D shapes, and functionalization with cross-linking and conductive additives. J. Manuf. Process. 2021;68:445–453. doi: 10.1016/j.jmapro.2021.05.051. DOI

Amor N., Noman M.T., Petru M. Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network. Polymers. 2021;13:3104. doi: 10.3390/polym13183104. PubMed DOI PMC

Noman M.T., Petrů M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC

Balram D., Lian K.-Y., Sebastian N., Al-Mubaddel F.S., Noman M.T. Ultrasensitive detection of food colorant sunset yellow using nickel nanoparticles promoted lettuce-like spinel Co3O4 anchored GO nanosheets. Food Chem. Toxicol. 2021;159:112725. doi: 10.1016/j.fct.2021.112725. PubMed DOI

Strobach E., Bhatia B., Yang S., Zhao L., Wang E.N. High temperature annealing for structural optimization of silica aerogels in solar thermal applications. J. Non-Cryst. Solids. 2017;462:72–77. doi: 10.1016/j.jnoncrysol.2017.02.009. DOI

Li Q., Zhang Y., Wen Z.-X., Qiu Y. An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector. Energy Convers. Manag. 2020;214:112911. doi: 10.1016/j.enconman.2020.112911. DOI

Han L., Dong L., Zhang H., Li F., Tian L., Li G., Jia Q., Zhang S. Thermal insulation TiN aerogels prepared by a combined freeze-casting and carbothermal reduction-nitridation technique. J. Eur. Ceram. Soc. 2021;41:5127–5137. doi: 10.1016/j.jeurceramsoc.2021.01.037. DOI

Liu S., Wu X., Li Y., Cui S., Shen X., Tan G. Hydrophobic in-situ SiO2-TiO2 composite aerogel for heavy oil thermal recovery: Synthesis and high temperature performance. Appl. Therm. Eng. 2021;190:116745. doi: 10.1016/j.applthermaleng.2021.116745. DOI

Long S., Feng Y., He F., Zhao J., Bai T., Lin H., Cai W., Mao C., Chen Y., Gan L. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy. 2021;85:105973. doi: 10.1016/j.nanoen.2021.105973. DOI

Liu X., Sheng G., Zhong M., Zhou X. Dispersed and size-selected WO3 nanoparticles in carbon aerogel for supercapacitor applications. Mater. Des. 2018;141:220–229. doi: 10.1016/j.matdes.2017.12.038. PubMed DOI

Muniyandi T.M., Balamurugan S., Naresh N., Prakash I., Venkatesh R., Deshpande U., Satyanarayana N. Li2FeSiO4/C aerogel: A promising nanostructured cathode material for lithium-ion battery applications. J. Alloys Compd. 2021;887:161341. doi: 10.1016/j.jallcom.2021.161341. DOI

Chen J., Chen Y., Li C., Hu Y., Fang L., Yang Q., Shi Z., Xiong C. Incorporation of Fe3O4 nanoparticles in three-dimensional carbon nanofiber/carbon nanotube aerogels for high-performance anodes of lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2021;631:127716. doi: 10.1016/j.colsurfa.2021.127716. DOI

Jiang X., Ban C., Li L., Li H., Hao J., Chen W., Liu X. Design of thermoelectric battery based on BN aerogels and Bi2Te3 composites. J. Alloys Compd. 2021;887:161280. doi: 10.1016/j.jallcom.2021.161280. DOI

Bhamare V.S., Kulkarni R.M., Khan A.A.P. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Adsorptive removals of pollutants using aerogels and its composites; pp. 171–199.

Eniola J.O., Ansari M.O., Barakat M., Kumar R. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Aerogels in photocatalysis; pp. 87–108.

Moheman A., Bhawani S.A., Tariq A. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Aerogels for waterborne pollutants purification; pp. 109–124.

Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC

Rohilla S., Gupta A., Kumar V., Kumari S., Petru M., Amor N., Noman M.T., Dalal J. Excellent UV-Light Triggered Photocatalytic Performance of ZnO.SiO2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye. Nanomaterials. 2021;11:2548. doi: 10.3390/nano11102548. PubMed DOI PMC

Golder S., Narayanan R., Hossain M., Islam M.R. Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings. Energies. 2021;14:3310. doi: 10.3390/en14113310. DOI

Qi Z., Liu H., Wang J., Yan F. The enhanced transfer behavior and tribological properties in deep sea environment of poly (butylene terephthalate) composites reinforced by silica nanoaerogels. Tribol. Int. 2021;160:107051. doi: 10.1016/j.triboint.2021.107051. DOI

Amor N., Noman M.T., Petru M., Mahmood A., Ismail A. Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites. Sci. Rep. 2021;11:13649. PubMed PMC

Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC

Alizadeh T., Hamedsoltani L. Managing of gas sensing characteristic of a reduced graphene oxide based gas sensor by the change in synthesis condition: A new approach for electronic nose design. Mater. Chem. Phys. 2016;183:181–190. doi: 10.1016/j.matchemphys.2016.08.017. DOI

Thubsuang U., Sukanan D., Sahasithiwat S., Wongkasemjit S., Chaisuwan T. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite. Mater. Sci. Eng. B. 2015;200:67–77. doi: 10.1016/j.mseb.2015.06.010. DOI

Wu J., Li Z., Xie X., Tao K., Liu C., Khor K.A., Miao J., Norford L.K. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity. J. Mater. Chem. A. 2018;6:478–488. doi: 10.1039/C7TA08775F. DOI

Yang F., Zhu J., Zou X., Pang X., Yang R., Chen S., Fang Y., Shao T., Luo X., Zhang L. Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance. Ceram. Int. 2018;44:1078–1085. doi: 10.1016/j.ceramint.2017.10.052. DOI

Liu X., Sun J., Zhang X. Novel 3D graphene aerogel-ZnO composites as efficient detection for NO2 at room temperature. Sens. Actuators B Chem. 2015;211:220–226. doi: 10.1016/j.snb.2015.01.083. DOI

Wang R., Li G., Dong Y., Chi Y., Chen G. Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal. Chem. 2013;85:8065–8069. doi: 10.1021/ac401880h. PubMed DOI

Wang C.-T., Wu C.-L. Electrical sensing properties of silica aerogel thin films to humidity. Thin Solid Films. 2006;496:658–664. doi: 10.1016/j.tsf.2005.09.001. DOI

Alizadeh T., Ahmadian F. Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia. Anal. Chim. Acta. 2015;897:87–95. doi: 10.1016/j.aca.2015.09.031. PubMed DOI

Gao H., Ma Y., Song P., Leng J., Wang Q. Gas sensor based on rGO/ZnO aerogel for efficient detection of NO2 at room temperature. J. Mater. Sci. Mater. Electron. 2021;32:10058–10069. doi: 10.1007/s10854-021-05664-5. DOI

Bibi A., Rubio Y.R.M., Santiago K.S., Jia H.-W., Ahmed M.M., Lin Y.-F., Yeh J.-M. H2S-Sensing Studies Using Interdigitated Electrode with Spin-Coated Carbon Aerogel-Polyaniline Composites. Polymers. 2021;13:1457. doi: 10.3390/polym13091457. PubMed DOI PMC

Zhu H., Dai S., Zhou X., Dong X., Jiang Y., Chen Y., Yuan N., Ding J. A highly sensitive piezoresistive sensor based on CNT-rGO aerogel for human motion detection. J. Compos. Mater. 2021;55:00219983211020110. doi: 10.1177/00219983211020110. DOI

Cao X., Zhang J., Chen S., Varley R.J., Pan K. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 2020;30:2003618. doi: 10.1002/adfm.202003618. DOI

Wei S., Qiu X., An J., Chen Z., Zhang X. Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application. Compos. Sci. Technol. 2021;207:108730. doi: 10.1016/j.compscitech.2021.108730. DOI

Bi Y., Hei Y., Wang N., Liu J., Ma C.-B. Synthesis of a clustered carbon aerogel interconnected by carbon balls from the biomass of taros for construction of a multi-functional electrochemical sensor. Anal. Chim. Acta. 2021;1164:338514. doi: 10.1016/j.aca.2021.338514. PubMed DOI

Yang Z., Li H., Zhang S., Lai X., Zeng X. Superhydrophobic MXene@ carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021;425:130462. doi: 10.1016/j.cej.2021.130462. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...