ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35568253
PubMed Central
PMC9192818
DOI
10.1016/j.jlr.2022.100226
PII: S0022-2275(22)00059-1
Knihovny.cz E-resources
- Keywords
- PNPLA1 deficiency, Skin, acylceramides, barrier function, ceramides, linoleic acid, lipids, model membranes, sphingolipids, stratum corneum,
- MeSH
- Acyltransferases MeSH
- Ceramides * chemistry MeSH
- Epidermis MeSH
- Ichthyosis MeSH
- Skin * MeSH
- Linoleic Acid MeSH
- Lipase MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acyltransferases MeSH
- Ceramides * MeSH
- Linoleic Acid MeSH
- Lipase MeSH
- PNPLA1 protein, mouse MeSH Browser
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here, we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase. To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to long periodicity lamellar phase. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.
Charles University Faculty of Pharmacy in Hradec Králové Hradec Králové Czech Republic
Department of Dermatology Vanderbilt University Medical Center Nashville TN USA
Institute of Molecular Biosciences University of Graz Graz Austria
See more in PubMed
Madison K.C. Barrier function of the skin: "La Raison d'Etre" of the epidermis. J. Invest. Dermatol. 2003;121:231–241. PubMed
Elias P.M. Epidermal barrier function: intercellular lamellar lipid structures, origin, composition and metabolism. J. Control Release. 1991;15:199–208.
Masukawa Y., Narita H., Sato H., Naoe A., Kondo N., Sugai Y., et al. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009;50:1708–1719. PubMed PMC
Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1993;1182:147–151. PubMed
van Smeden J., Boiten W.A., Hankemeier T., Rissmann R., Bouwstra J.A., Vreeken R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. BBA-Mol. Cell Biol. L. 2014;1841:70–79. PubMed
t'Kindt R., Jorge L., Dumont E., Couturon P., David F., Sandra P., et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012;84:403–411. PubMed
Wertz P.W., Downing D.T. Ceramides of pig epidermis: structure determination. J. Lipid Res. 1983;24:759–765. PubMed
Bowser P.A., Nugteren D., White R.J., Houtsmuller U., Prottey C. Identification, isolation and characterization of epidermal lipids containing linoleic acid. Biochim. Biophys. Acta. 1985;834:419–428. PubMed
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 2016;63:50–69. PubMed
Ishikawa J., Narita H., Kondo N., Hotta M., Takagi Y., Masukawa Y., et al. Changes in the ceramide profile of Atopic Dermatitis patients. J. Invest. Dermatol. 2010;130:2511–2514. PubMed
Janssens M., van Smeden J., Gooris G.S., Bras W., Portale G., Caspers P.J., et al. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 2011;131:2136–2138. PubMed
Bouwstra J.A., Cheng K., Gooris G., Weerheim A., Ponec M. The role of ceramides 1 and 2 in the stratum corneum lipid organisation. Bba-lipid. Lipid Met. 1996;1300:177–186. PubMed
Bouwstra J.A., Gooris G.S., Dubbelaar F.E.R., Weerheim A.M., Ijzerman A.P., Ponec M. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 1998;39:186–196. PubMed
Opálka L., Kováčik A., Pullmannová P., Maixner J., Vávrová K. Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J. Lipid Res. 2020;61:219–228. PubMed PMC
Pham Q.D., Mojumdar E.H., Gooris G.S., Bouwstra J.A., Sparr E., Topgaard D. Solid and fluid segments within the same molecule of stratum corneum ceramide lipid. Q. Rev. Biophys. 2018;51 PubMed
Ongpipattanakul B., Francoeur M.L., Potts R.O. Polymorphism in stratum corneum lipids. BBA-Biomem. 1994;1190:115–122. PubMed
Takeichi T., Hirabayashi T., Miyasaka Y., Kawamoto A., Okuno Y., Taguchi S., et al. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation. J. Clin. Invest. 2020;130:890–903. PubMed PMC
Wertz P.W., Madison K.C., Downing D.T. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 1989;92:109–111. PubMed
Akiyama M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. J. Dermatol. Sci. 2017;88:3–9. PubMed
Crumrine D., Khnykin D., Krieg P., Man M.-Q., Celli A., Mauro T.M., et al. Mutations in recessive congenital ichthyoses illuminate the origin and functions of the corneocyte lipid envelope. J. Invest. Dermatol. 2019;139:760–768. PubMed PMC
Janssens M., van Smeden J., Gooris G.S., Bras W., Portale G., Caspers P.J., et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 2012;53:2755–2766. PubMed PMC
Jennemann R., Rabionet M., Gorgas K., Epstein S., Dalpke A., Rothermel U., et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 2012;21:586–608. PubMed
van Smeden J., Janssens M., Gooris G.S., Bouwstra J.A. The important role of stratum corneum lipids for the cutaneous barrier function. BBA-Mol. Cell Biol. L. 2014;1841:295–313. PubMed
Macheleidt O., Kaiser H.W., Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 2002;119:166–173. PubMed
Jungersted J., Scheer H., Mempel M., Baurecht H., Cifuentes L., Høgh J., et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911–918. PubMed
Paige D., Morse-Fisher N., Harper J. Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses. Br. J. Dermatol. 1994;131:23–27. PubMed
Oji V., Tadini G., Akiyama M., Bardon C.B., Bodemer C., Bourrat E., et al. Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in soreze 2009. J. Am. Acad. Dermatol. 2010;63:607–641. PubMed
Takeichi T., Akiyama M. Inherited ichthyosis: non-syndromic forms. J. Dermatol. 2016;43:242–251. PubMed
Ohno Y., Kamiyama N., Nakamichi S., Kihara A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 2017;8:14610. PubMed PMC
Pichery M., Huchenq A., Sandhoff R., Severino-Freire M., Zaafouri S., Opalka L., et al. PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum. Mol. Genet. 2017;26:1787–1800. PubMed
Grond S., Eichmann T.O., Dubrac S., Kolb D., Schmuth M., Fischer J., et al. PNPLA1 deficiency in mice and humans leads to a defect in the synthesis of omega-O-acylceramides. J. J. Invest. Dermatol. 2017;137:394–402. PubMed PMC
Hirabayashi T., Anjo T., Kaneko A., Senoo Y., Shibata A., Takama H., et al. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat. Commun. 2017;8:1–13. PubMed PMC
Grall A., Guaguère E., Planchais S., Grond S., Bourrat E., Hausser I., et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat. Genet. 2012;44:140. PubMed
Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., et al. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 2015;17:5456–5459. PubMed
Kováčik A., Vogel A., Adler J., Pullmannová P., Vávrová K., Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2 H solid-state NMR spectroscopy and X-ray powder diffraction. BBA-Biomem. 2018;1860:1162–1170. PubMed
Meyer J.M., Crumrine D., Schneider H., Dick A., Schmuth M., Gruber R., et al. Unbound corneocyte lipid envelopes in 12R-lipoxygenase deficiency support a specific role in lipid-protein cross-linking. Am. J. Pathol. 2021;191:921–929. PubMed PMC
Groen D., Gooris G.S., Bouwstra J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 2010;26:4168–4175. PubMed
Wertz P.W., Schwartzendruber D.C., Madison K.C., Downing D.T. Composition and morphology of epidermal cyst lipids. J. Invest. Dermatol. 1987;89:419–425. PubMed
Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624–15633. PubMed
Pullmannová P., Staňková K., Pospíšilová M., Školová B., Zbytovská J., Vávrová K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. BBA-Biomem. 2014;1838:2115–2126. PubMed
Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., et al. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. PubMed
Kovacik A., Pullmannová P., Maixner J., Vavrova K. Effects of ceramide and dihydroceramide stereochemistry at C-3 on the phase behavior and permeability of skin lipid membranes. Langmuir. 2018;34:521–529. PubMed
Opálka L., Kováčik A., Maixner J., Vávrová K. Omega-O-acylceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 2016;32:12894–12904. PubMed
Hou S.Y.E., Mitra A.K., White S.H., Menon G.K., Ghadially R., Elias P.M. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215–223. PubMed
Pullmannova P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., et al. long and very long lamellar phases in model Stratum Corneum lipid membranes. J. Lipid Res. 2019;60:963–971. PubMed PMC
de Jager M., Gooris G., Ponec M., Bouwstra J. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Invest. Dermatol. 2004;123:911–916. PubMed
Damien F., Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611–614. PubMed
Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control Release. 2003;86:69–92. PubMed
Yoshiike T., Aikawa Y., Sindhvananda J., Suto H., Nishimura K., Kawamoto T., et al. Skin barrier defect in atopic dermatitis: increased permeability of the stratum corneum using dimethyl sulfoxide and theophylline. J. Dermatol. Sci. 1993;5:92–96. PubMed
Boncheva M. The physical chemistry of the stratum corneum lipids. Int. J. Cosmet. Sci. 2014;36:505–515. PubMed
Engberg O., Kováčik A., Pullmannová P., Juhaščik M., Opálka L., Huster D., et al. The sphingosine and acyl chains of ceramide [NS] show very different structure and dynamics that challenge our understanding of the skin barrier. Angew. Chem. Int. Ed. 2020;59:17383–17387. PubMed PMC
Iwai I., Han H., den Hollander L., Svensson S., Öfverstedt L.-G., Anwar J., et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215–2225. PubMed
Školová B., Hudská K., Pullmannová P., Kováčik A., Palát K., Roh J., et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460–10470. PubMed
Kováčik A., Opálka L., Šilarová M., Roh J., Vávrová K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation–protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343–73350.
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Ponec M. Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J. Invest. Dermatol. 2002;118:606–617. PubMed
Bouwstra J., Gooris G., Salomons-de Vries M., Van der Spek J., Bras W. Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study. Int. J. Pharm. 1992;84:205–216.
Sagrafena I., Paraskevopoulos G., Pullmannová P., Opálka L., Nováčková A., Lourantou O., et al. Assembly of human stratum corneum lipids in vitro: fluidity matters. J. Invest. Dermatol. 2022 doi: 10.1016/j.jid.2021.12.008. PubMed DOI
Mauldin E.A., Crumrine D., Casal M.L., Jeong S., Opálka L., Vavrova K., et al. Cellular and metabolic basis for the ichthyotic phenotype in NIPAL4 (Ichthyin)–deficient canines. Am. J. Pathol. 2018;188:1419–1429. PubMed PMC
Lysosphingolipids in ceramide-deficient skin lipid models