• This record comes from PubMed

Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson's disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.

See more in PubMed

Im G.-I. Current Status of Regenerative Medicine in Osteoarthritis. Bone Jt. Res. 2021;10:134–136. doi: 10.1302/2046-3758.102.BJR-2020-0517.R1. PubMed DOI PMC

De la Torre P., Flores A.I. Current Status and Future Prospects of Perinatal Stem Cells. Genes. 2020;12:6. doi: 10.3390/genes12010006. PubMed DOI PMC

Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W., Kempisty B. Ovarian Follicular Cells—Living in the Shadow of Stemness Cellular Competence. Med. J. Cell Biol. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI

Kulus M., Kulus J., Jankowski M., Borowiec B., Jeseta M., Bukowska D., Brüssow K.P., Kempisty B., Antosik P. The Use of Mesenchymal Stem Cells in Veterinary Medicine. Med. J. Cell Biol. 2018;6:101–107. doi: 10.2478/acb-2018-0016. DOI

Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for Existence of Molecular Stemness Markers in Porcine Ovarian Follicular Granulosa Cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI

Jankowski M., Dyszkiewicz-Konwińska M., Budna J., Knap S., Bryja A., Borys S., Kranc W., Magas M., Jeseta M., Bukowska D., et al. The Differentiation and Transdifferentiation of Epithelial Cells In Vitro—Is It a New Strategy in Regenerative Biomedicine? Med. J. Cell Biol. 2018;6:27–32. doi: 10.2478/acb-2018-0005. DOI

Medvedev S.P., Shevchenko A.I., Zakian S.M. Induced Pluripotent Stem Cells: Problems and Advantages When Applying Them in Regenerative Medicine. Acta Nat. 2010;2:18–27. doi: 10.32607/20758251-2010-2-2-18-27. PubMed DOI PMC

Jarrige M., Frank E., Herardot E., Martineau S., Darle A., Benabides M., Domingues S., Chose O., Habeler W., Lorant J., et al. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells. 2021;10:240. doi: 10.3390/cells10020240. PubMed DOI PMC

Dompe C., Wasiatycz G., Mozdziak P., Jankowski M., Kempisty B. Current Clinical Applications of Adipose-Derived Stem Cells in Humans and Animals. Med. J. Cell Biol. 2019;7:105–111. doi: 10.2478/acb-2019-0014. DOI

Man Y., Yao X., Yang T., Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front. Cell Dev. Biol. 2021;9:14. doi: 10.3389/fcell.2021.621214. PubMed DOI PMC

De la Morena M.T., Gatti R.A. A History of Bone Marrow Transplantation. Hematol. Oncol. Clin. N. Am. 2011;25:1–15. doi: 10.1016/j.hoc.2010.11.001. PubMed DOI

Young H.E., Black A.C. Adult Stem Cells. Anat. Rec.—Part A Discov. Mol. Cell. Evol. Biol. 2004;276:75–102. doi: 10.1002/ar.a.10134. PubMed DOI

Rojewska M., Popis M., Jankowski M., Bukowska D., Antosik P., Kempisty B. Stemness Specificity of Epithelial Cells—Application of Cell and Tissue Technology in Regenerative Medicine. Med. J. Cell Biol. 2018;6:114–119. doi: 10.2478/acb-2018-0018. DOI

Stefanska K., Bryl R., Moncrieff L., Pinto N., Shibli J.A., Dyszkiewicz-KonwiÅska M. Mesenchymal Stem Cells—A Historical Overview. Med. J. Cell Biol. 2020;8:83–87. doi: 10.2478/acb-2020-0010. DOI

Stefanska K., Bryl R., Hutchings G., Shibli J.A., Dyszkiewicz-KonwiÅska M. Human Umbilical Cord Stem Cells-the Discovery, History and Possible Application. Med. J. Cell Biol. 2020;8:78–82. doi: 10.2478/acb-2020-0009. DOI

Müller M., Czarnecka J., Brzeziński M., Prus J., Kulak B., Hołubowski A., Stasiak M., Borowiec B., Bryl R., Moncrieff L., et al. Current Stem Cells Technologies Used in Medicine. Med. J. Cell Biol. 2020;8:124–138. doi: 10.2478/acb-2020-0016. DOI

Jankowski M., Dompe C., Sibiak R., Wąsiatycz G., Mozdziak P., Jaśkowski J.M., Antosik P., Kempisty B., Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells. 2020;9:1783. doi: 10.3390/cells9081783. PubMed DOI PMC

Cotman C.W., Head E. The Canine (Dog) Model of Human Aging and Disease: Dietary, Environmental and Immunotherapy Approaches. J. Alzheimer’s Dis. 2008;15:685–707. doi: 10.3233/JAD-2008-15413. PubMed DOI

Hytönen M.K., Lohi H. Canine Models of Human Rare Disorders. Rare Dis. 2016;4:e1241362. doi: 10.1080/21675511.2016.1241362. PubMed DOI PMC

Mildmay-White A., Khan W. Cell Surface Markers on Adipose-Derived Stem Cells: A Systematic Review. Curr. Stem Cell Res. Ther. 2017;12:484–492. doi: 10.2174/1574888X11666160429122133. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Chermuła B., Brazert M., Jeseta M., Ożegowska K., Sujka-Kordowska P., Konwerska A., Bryja A., Kranc W., Jankowski M., Nawrocki M.J., et al. The Unique Mechanisms of Cellular Proliferation, Migration and Apoptosis Are Regulated through Oocyte Maturational Development—A Complete Transcriptomic and Histochemical Study. Int. J. Mol. Sci. 2019;20:84. doi: 10.3390/ijms20010084. PubMed DOI PMC

Jiang H., Lei R., Ding S.W., Zhu S. Skewer: A Fast and Accurate Adapter Trimmer for next-Generation Sequencing Paired-End Reads. BMC Bioinform. 2014;15:182. doi: 10.1186/1471-2105-15-182. PubMed DOI PMC

Yates A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., et al. Ensembl 2020. Nucleic Acids Res. 2020;48:D682–D688. doi: 10.1093/nar/gkz966. PubMed DOI PMC

Kõressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. Primer3-Masker: Integrating Masking of Template Sequence with Primer Design Software. Bioinformatics. 2018;34:1937–1938. doi: 10.1093/bioinformatics/bty036. PubMed DOI

Rao X., Huang X., Zhou Z., Lin X. An Improvement of the 2ˆ(-Delta Delta CT) Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis. Biostat. Bioinform. Biomath. 2013;3:71–85. PubMed PMC

Ge S.X., Son E.W., Yao R. IDEP: An Integrated Web Application for Differential Expression and Pathway Analysis of RNA-Seq Data. BMC Bioinform. 2018;19:534. doi: 10.1186/s12859-018-2486-6. PubMed DOI PMC

Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Jankowski M., Kaczmarek M., Wąsiatycz G., Dompe C., Mozdziak P., Jaśkowski J.M., Piotrowska-Kempisty H., Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts. Int. J. Mol. Sci. 2021;22:6663. doi: 10.3390/ijms22136663. PubMed DOI PMC

Dyszkiewicz-Konwińska M., Nawrocki M., Huang Y., Bryja A., Celichowski P., Jankowski M., Błochowiak K., Mehr K., Bruska M., Nowicki M., et al. New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation—A Primary Culture Approach. Int. J. Mol. Sci. 2018;19:1027. doi: 10.3390/ijms19041027. PubMed DOI PMC

Kranc W., Brązert M., Ożegowska K., Nawrocki M.M.J., Budna J., Celichowski P., Dyszkiewicz-Konwińska M., Jankowski M., Jeseta M., Pawelczyk L., et al. Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells—A Primary Culture Approach. Int. J. Mol. Sci. 2017;18:2673. doi: 10.3390/ijms18122673. PubMed DOI PMC

Ku C.S., Naidoo N., Wu M., Soong R. Studying the Epigenome Using next Generation Sequencing. J. Med. Genet. 2011;48:721–730. doi: 10.1136/jmedgenet-2011-100242. PubMed DOI

James C.G., Appleton C.T.G., Ulici V., Michael Underhill T., Beier F. Microarray Analyses of Gene Expression during Chondrocyte Differentiation Identifies Novel Regulators of Hypertrophy. Mol. Biol. Cell. 2005;16:5316–5333. doi: 10.1091/mbc.e05-01-0084. PubMed DOI PMC

Di Rosa M., Szychlinska M.A., Tibullo D., Malaguarnera L., Musumeci G. Expression of CHI3L1 and CHIT1 in Osteoarthritic Rat Cartilage Model. A Morphological Study. Eur. J. Histochem. 2014;58:213–221. doi: 10.4081/ejh.2014.2423. PubMed DOI PMC

Szychlinska M.A., Trovato F.M., Di Rosa M., Malaguarnera L., Puzzo L., Leonardi R., Castrogiovanni P., Musumeci G. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles. Int. J. Mol. Sci. 2016;17:359. doi: 10.3390/ijms17030359. PubMed DOI PMC

LaPointe V.L.S., Verpoorte A., Stevens M.M. The Changing Integrin Expression and a Role for Integrin Β8 in the Chondrogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE. 2013;8:e82035. doi: 10.1371/journal.pone.0082035. PubMed DOI PMC

Bendele F., Beier R., Terkeltaub J.S., Mort A.M., Schmidt A., Denise L., Cecil C., Thomas G., Appleton M.D. The Pattern Recognition Receptor CD36 Is a Chondrocyte Hypertrophy Marker Associated with Suppression of Catabolic Responses and Promotion of Repair Responses to Inflammatory Stimuli. J. Immunol. 2009;182:5024–5031. doi: 10.4049/JIMMUNOL.0803603. PubMed DOI PMC

KerkelÄ E., Böhling T., Herva R., Uria J.A., Saarialho-Kere U. Human Macrophage Metalloelastase (MMP-12) Expression Is Induced in Chondrocytes during Fetal Development and Malignant Transformation. Bone. 2001;29:487–493. doi: 10.1016/S8756-3282(01)00595-6. PubMed DOI

Wu S., Yoshiko Y., De Luca F. Stanniocalcin 1 Acts as a Paracrine Regulator of Growth Plate Chondrogenesis*. J. Biol. Chem. 2006;281:5120–5127. doi: 10.1074/jbc.M506667200. PubMed DOI

Ramesova A., Vesela B., Svandova E., Lesot H., Matalova E. Caspase-9 Inhibition Decreases Expression of Mmp9 during Chondrogenesis. Histochem. Cell Biol. 2022;157:403–413. doi: 10.1007/s00418-021-02067-9. PubMed DOI

Khan T.A., Kalsoom K., Iqbal A., Asif H., Rahman H., Farooq S.O., Naveed H., Nasir U., Amin M.U., Hussain M., et al. A Novel Missense Mutation in the NADPH Binding Domain of CYBB Abolishes the NADPH Oxidase Activity in a Male Patient with Increased Susceptibility to Infections. Microb. Pathog. 2016;100:163–169. doi: 10.1016/j.micpath.2016.09.020. PubMed DOI

Ma J., Jiang T., Tan L., Yu J.T. TYROBP in Alzheimer’s Disease. Mol. Neurobiol. 2015;51:820–826. doi: 10.1007/s12035-014-8811-9. PubMed DOI

Liang T., Chen J., Xu G.Y., Zhang Z., Xue J., Zeng H., Jiang J., Chen T., Qin Z., Li H., et al. STAT3 and SPI1, May Lead to the Immune System Dysregulation and Heterotopic Ossification in Ankylosing Spondylitis. BMC Immunol. 2022;23:3. doi: 10.1186/s12865-022-00476-6. PubMed DOI PMC

Mirza R., Qiao S., Tateyama K., Miyamoto T., Xiuli L., Seo H. 3β-Hydroxysterol-Delta24 Reductase Plays an Important Role in Long Bone Growth by Protecting Chondrocytes from Reactive Oxygen Species. J. Bone Miner. Metab. 2012;30:144–153. doi: 10.1007/s00774-011-0303-7. PubMed DOI

Jang Y., Jung H., Nam Y., Rim Y.A., Kim J., Jeong S.H., Ju J.H. Centrifugal Gravity-Induced BMP4 Induces Chondrogenic Differentiation of Adipose-Derived Stem Cells via SOX9 Upregulation. Stem Cell Res. Ther. 2016;7:184. doi: 10.1186/s13287-016-0445-6. PubMed DOI PMC

Kim B.S., Kang K.S., Kang S.K. Soluble Factors from ASCs Effectively Direct Control of Chondrogenic Fate. Cell Prolif. 2010;43:249–261. doi: 10.1111/j.1365-2184.2010.00680.x. PubMed DOI PMC

Shu B., Zhang M., Xie R., Wang M., Jin H., Hou W., Tang D., Harris S.E., Mishina Y., O’Keefe R.J., et al. BMP2, but Not BMP4, Is Crucial for Chondrocyte Proliferation and Maturation during Endochondral Bone Development. J. Cell Sci. 2011;124:3428–3440. doi: 10.1242/jcs.083659. PubMed DOI PMC

Sarem M., Otto O., Tanaka S., Shastri V.P. Cell Number in Mesenchymal Stem Cell Aggregates Dictates Cell Stiffness and Chondrogenesis. Stem Cell Res. Ther. 2019;10:10. doi: 10.1186/s13287-018-1103-y. PubMed DOI PMC

Mishra P.J., Mishra P.J., Humeniuk R., Medina D.J., Alexe G., Mesirov J.P., Ganesan S., Glod J.W., Banerjee D. Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells. Cancer Res. 2008;68:4331–4339. doi: 10.1158/0008-5472.CAN-08-0943. PubMed DOI PMC

Steinberg J., Ritchie G.R.S., Roumeliotis T.I., Jayasuriya R.L., Clark M.J., Brooks R.A., Binch A.L.A., Shah K.M., Coyle R., Pardo M., et al. Integrative Epigenomics, Transcriptomics and Proteomics of Patient Chondrocytes Reveal Genes and Pathways Involved in Osteoarthritis. Sci. Rep. 2017;7:8935. doi: 10.1038/s41598-017-09335-6. PubMed DOI PMC

Gingras H., Cases O., Krasilnikova M., Bérubé G., Nepveu A. Biochemical Characterization of the Mammalian Cux2 Protein. Gene. 2005;344:273–285. doi: 10.1016/j.gene.2004.11.008. PubMed DOI

Hartill V.L., van de Hoek G., Patel M.P., Little R., Watson C.M., Berry I.R., Shoemark A., Abdelmottaleb D., Parkes E., Bacchelli C., et al. DNAAF1 Links Heart Laterality with the AAA+ ATPase RUVBL1 and Ciliary Intraflagellar Transport. Hum. Mol. Genet. 2018;27:529–545. doi: 10.1093/hmg/ddx422. PubMed DOI PMC

Miao C., Jiang Q., Li H., Zhang Q., Bai B., Bao Y., Zhang T. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans. G3 Genes Genomes Genet. 2016;6:3307–3316. doi: 10.1534/g3.116.033696. PubMed DOI PMC

Chiesa A., Crisafulli C., Porcelli S., Han C., Patkar A.A., Lee S.J., Park M.H., Jun T.Y., Serretti A., Pae C.U. Influence of GRIA1, GRIA2 and GRIA4 Polymorphisms on Diagnosis and Response to Treatment in Patients with Major Depressive Disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2012;262:305–311. doi: 10.1007/s00406-011-0270-y. PubMed DOI

Kerner B., Jasinska A.J., DeYoung J., Almonte M., Choi O.W., Freimer N.B. Polymorphisms in the GRIA1 Gene Region in Psychotic Bipolar Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009;150:24–32. doi: 10.1002/ajmg.b.30780. PubMed DOI PMC

Tilley S.K., Kim W.Y., Fry R.C. Analysis of Bladder Cancer Tumor CpG Methylation and Gene Expression within The Cancer Genome Atlas Identifies GRIA1 as a Prognostic Biomarker for Basal-like Bladder Cancer. Am. J. Cancer Res. 2017;7:1850. PubMed PMC

Moffett J.R., Arun P., Ariyannur P.S., Garbern J.Y., Jacobowitz D.M., Namboodiri A.M.A. Extensive Aspartoacylase Expression in the Rat Central Nervous System. Glia. 2011;59:1414–1434. doi: 10.1002/glia.21186. PubMed DOI PMC

Chen T.Y., Li X., Hung C.H., Bahudhanapati H., Tan J., Kass D.J., Zhang Y. The Relaxin Family Peptide Receptor 1 (RXFP1): An Emerging Player in Human Health and Disease. Mol. Genet. Genom. Med. 2020;8:e1194. doi: 10.1002/mgg3.1194. PubMed DOI PMC

Valenti M.T., Carbonare L.D., Donatelli L., Bertoldo F., Zanatta M., Lo Cascio V. Gene Expression Analysis in Osteoblastic Differentiation from Peripheral Blood Mesenchymal Stem Cells. Bone. 2008;43:1084–1092. doi: 10.1016/j.bone.2008.07.252. PubMed DOI

Jiao K., Zhang J., Zhang M., Wei Y., Wu Y., Qiu Z.Y., He J., Cao Y., Hu J., Zhu H., et al. The Identification of CD163 Expressing Phagocytic Chondrocytes in Joint Cartilage and Its Novel Scavenger Role in Cartilage Degradation. PLoS ONE. 2013;8:e53312. doi: 10.1371/journal.pone.0053312. PubMed DOI PMC

Du Y., Duan T., Feng Y., Liu Q., Lin M., Cui J., Wang R.-F. LRRC25 Inhibits Type I IFN Signaling by Targeting ISG15-Associated RIG-I for Autophagic Degradation. EMBO J. 2018;37:351–366. doi: 10.15252/embj.201796781. PubMed DOI PMC

Wu L., Bluguermann C., Kyupelyan L., Latour B., Gonzalez S., Shah S., Galic Z., Ge S., Zhu Y., Petrigliano F.A., et al. Human Developmental Chondrogenesis as a Basis for Engineering Chondrocytes from Pluripotent Stem Cells. Stem Cell Rep. 2013;1:575–589. doi: 10.1016/j.stemcr.2013.10.012. PubMed DOI PMC

Ogueta S., Muoz J., Obregon E., Delgado-Baeza E., García-Ruiz J.P. Prolactin Is a Component of the Human Synovial Liquid and Modulates the Growth and Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Mol. Cell. Endocrinol. 2002;190:51–63. doi: 10.1016/S0303-7207(02)00013-8. PubMed DOI

Seriwatanachai D., Krishnamra N., Charoenphandhu N. Chondroregulatory Action of Prolactin on Proliferation and Differentiation of Mouse Chondrogenic ATDC5 Cells in 3-Dimensional Micromass Cultures. Biochem. Biophys. Res. Commun. 2012;420:108–113. doi: 10.1016/j.bbrc.2012.02.123. PubMed DOI

Cui Y., Yu J., Urban J.P.G., Young D.A. Differential Gene Expression Profiling of Metalloproteinases and Their Inhibitors: A Comparison between Bovine Intervertebral Disc Nucleus Pulposus Cells and Articular Chondrocytes. Spine. 2010;35:1101–1108. doi: 10.1097/BRS.0b013e3181c0c727. PubMed DOI

Ozkul Y., Galderisi U. The Impact of Epigenetics on Mesenchymal Stem Cell Biology. J. Cell. Physiol. 2016;231:2393–2401. doi: 10.1002/jcp.25371. PubMed DOI

Horton E.R., Vallmajo-Martin Q., Martin I., Snedeker J.G., Ehrbar M., Blache U. Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Adv. Healthc. Mater. 2020;9:1901669. doi: 10.1002/adhm.201901669. PubMed DOI

Barbet R., Peiffer I., Hutchins J.R.A., Hatzfeld A., Garrido E., Hatzfeld J.A. Expression of the 49 Human ATP Binding Cassette (ABC) Genes in Pluripotent Embryonic Stem Cells and in Early- and Late-Stage Multipotent Mesenchymal Stem Cells: Possible Role of ABC Plasma Membrane Transporters in Maintaining Human Stem Cell Pluripotency. Cell Cycle. 2012;11:1611–1620. doi: 10.4161/cc.20023. PubMed DOI

Sun H., Huang A., Cao S. Current Status and Prospects of Gene Therapy for the Inner Ear. Hum. Gene Ther. 2011;22:1311–1322. doi: 10.1089/hum.2010.246. PubMed DOI PMC

Xiao P., Guo S., Wen X., He Q.T., Lin H., Huang S.M., Gou L., Zhang C., Yang Z., Zhong Y.N., et al. Tethered Peptide Activation Mechanism of the Adhesion GPCRs ADGRG2 and ADGRG4. Nature. 2022;604:771–778. doi: 10.1038/s41586-022-04590-8. PubMed DOI

Chung J., Marini S., Pera J., Norrving B., Jimenez-Conde J., Roquer J., Fernandez-Cadenas I., Tirschwell D.L., Selim M., Brown D.L., et al. Genome-Wide Association Study of Cerebral Small Vessel Disease Reveals Established and Novel Loci. Brain. 2019;142:3176. doi: 10.1093/brain/awz233. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...