Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
36140831
PubMed Central
PMC9498306
DOI
10.3390/genes13091664
PII: genes13091664
Knihovny.cz E-resources
- Keywords
- RNAseq, adipose, chondrocytes, differentiation, stem cells, transcriptomics,
- MeSH
- Chondrocytes * metabolism MeSH
- Genetic Markers MeSH
- Stem Cells MeSH
- Culture Media metabolism MeSH
- Matrix Metalloproteinase 12 metabolism MeSH
- Osteoarthritis * genetics metabolism MeSH
- Dogs MeSH
- RNA metabolism MeSH
- Adipose Tissue metabolism MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Genetic Markers MeSH
- Culture Media MeSH
- Matrix Metalloproteinase 12 MeSH
- RNA MeSH
The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson's disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.
Department of Anatomy Poznan University of Medical Sciences 60 701 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 701 Poznan Poland
Doctoral School Poznan University of Medical Sciences 60 701 Poznan Poland
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27695 USA
See more in PubMed
Im G.-I. Current Status of Regenerative Medicine in Osteoarthritis. Bone Jt. Res. 2021;10:134–136. doi: 10.1302/2046-3758.102.BJR-2020-0517.R1. PubMed DOI PMC
De la Torre P., Flores A.I. Current Status and Future Prospects of Perinatal Stem Cells. Genes. 2020;12:6. doi: 10.3390/genes12010006. PubMed DOI PMC
Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W., Kempisty B. Ovarian Follicular Cells—Living in the Shadow of Stemness Cellular Competence. Med. J. Cell Biol. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI
Kulus M., Kulus J., Jankowski M., Borowiec B., Jeseta M., Bukowska D., Brüssow K.P., Kempisty B., Antosik P. The Use of Mesenchymal Stem Cells in Veterinary Medicine. Med. J. Cell Biol. 2018;6:101–107. doi: 10.2478/acb-2018-0016. DOI
Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for Existence of Molecular Stemness Markers in Porcine Ovarian Follicular Granulosa Cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI
Jankowski M., Dyszkiewicz-Konwińska M., Budna J., Knap S., Bryja A., Borys S., Kranc W., Magas M., Jeseta M., Bukowska D., et al. The Differentiation and Transdifferentiation of Epithelial Cells In Vitro—Is It a New Strategy in Regenerative Biomedicine? Med. J. Cell Biol. 2018;6:27–32. doi: 10.2478/acb-2018-0005. DOI
Medvedev S.P., Shevchenko A.I., Zakian S.M. Induced Pluripotent Stem Cells: Problems and Advantages When Applying Them in Regenerative Medicine. Acta Nat. 2010;2:18–27. doi: 10.32607/20758251-2010-2-2-18-27. PubMed DOI PMC
Jarrige M., Frank E., Herardot E., Martineau S., Darle A., Benabides M., Domingues S., Chose O., Habeler W., Lorant J., et al. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells. 2021;10:240. doi: 10.3390/cells10020240. PubMed DOI PMC
Dompe C., Wasiatycz G., Mozdziak P., Jankowski M., Kempisty B. Current Clinical Applications of Adipose-Derived Stem Cells in Humans and Animals. Med. J. Cell Biol. 2019;7:105–111. doi: 10.2478/acb-2019-0014. DOI
Man Y., Yao X., Yang T., Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front. Cell Dev. Biol. 2021;9:14. doi: 10.3389/fcell.2021.621214. PubMed DOI PMC
De la Morena M.T., Gatti R.A. A History of Bone Marrow Transplantation. Hematol. Oncol. Clin. N. Am. 2011;25:1–15. doi: 10.1016/j.hoc.2010.11.001. PubMed DOI
Young H.E., Black A.C. Adult Stem Cells. Anat. Rec.—Part A Discov. Mol. Cell. Evol. Biol. 2004;276:75–102. doi: 10.1002/ar.a.10134. PubMed DOI
Rojewska M., Popis M., Jankowski M., Bukowska D., Antosik P., Kempisty B. Stemness Specificity of Epithelial Cells—Application of Cell and Tissue Technology in Regenerative Medicine. Med. J. Cell Biol. 2018;6:114–119. doi: 10.2478/acb-2018-0018. DOI
Stefanska K., Bryl R., Moncrieff L., Pinto N., Shibli J.A., Dyszkiewicz-KonwiÅska M. Mesenchymal Stem Cells—A Historical Overview. Med. J. Cell Biol. 2020;8:83–87. doi: 10.2478/acb-2020-0010. DOI
Stefanska K., Bryl R., Hutchings G., Shibli J.A., Dyszkiewicz-KonwiÅska M. Human Umbilical Cord Stem Cells-the Discovery, History and Possible Application. Med. J. Cell Biol. 2020;8:78–82. doi: 10.2478/acb-2020-0009. DOI
Müller M., Czarnecka J., Brzeziński M., Prus J., Kulak B., Hołubowski A., Stasiak M., Borowiec B., Bryl R., Moncrieff L., et al. Current Stem Cells Technologies Used in Medicine. Med. J. Cell Biol. 2020;8:124–138. doi: 10.2478/acb-2020-0016. DOI
Jankowski M., Dompe C., Sibiak R., Wąsiatycz G., Mozdziak P., Jaśkowski J.M., Antosik P., Kempisty B., Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells. 2020;9:1783. doi: 10.3390/cells9081783. PubMed DOI PMC
Cotman C.W., Head E. The Canine (Dog) Model of Human Aging and Disease: Dietary, Environmental and Immunotherapy Approaches. J. Alzheimer’s Dis. 2008;15:685–707. doi: 10.3233/JAD-2008-15413. PubMed DOI
Hytönen M.K., Lohi H. Canine Models of Human Rare Disorders. Rare Dis. 2016;4:e1241362. doi: 10.1080/21675511.2016.1241362. PubMed DOI PMC
Mildmay-White A., Khan W. Cell Surface Markers on Adipose-Derived Stem Cells: A Systematic Review. Curr. Stem Cell Res. Ther. 2017;12:484–492. doi: 10.2174/1574888X11666160429122133. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Chermuła B., Brazert M., Jeseta M., Ożegowska K., Sujka-Kordowska P., Konwerska A., Bryja A., Kranc W., Jankowski M., Nawrocki M.J., et al. The Unique Mechanisms of Cellular Proliferation, Migration and Apoptosis Are Regulated through Oocyte Maturational Development—A Complete Transcriptomic and Histochemical Study. Int. J. Mol. Sci. 2019;20:84. doi: 10.3390/ijms20010084. PubMed DOI PMC
Jiang H., Lei R., Ding S.W., Zhu S. Skewer: A Fast and Accurate Adapter Trimmer for next-Generation Sequencing Paired-End Reads. BMC Bioinform. 2014;15:182. doi: 10.1186/1471-2105-15-182. PubMed DOI PMC
Yates A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., et al. Ensembl 2020. Nucleic Acids Res. 2020;48:D682–D688. doi: 10.1093/nar/gkz966. PubMed DOI PMC
Kõressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. Primer3-Masker: Integrating Masking of Template Sequence with Primer Design Software. Bioinformatics. 2018;34:1937–1938. doi: 10.1093/bioinformatics/bty036. PubMed DOI
Rao X., Huang X., Zhou Z., Lin X. An Improvement of the 2ˆ(-Delta Delta CT) Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis. Biostat. Bioinform. Biomath. 2013;3:71–85. PubMed PMC
Ge S.X., Son E.W., Yao R. IDEP: An Integrated Web Application for Differential Expression and Pathway Analysis of RNA-Seq Data. BMC Bioinform. 2018;19:534. doi: 10.1186/s12859-018-2486-6. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Jankowski M., Kaczmarek M., Wąsiatycz G., Dompe C., Mozdziak P., Jaśkowski J.M., Piotrowska-Kempisty H., Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts. Int. J. Mol. Sci. 2021;22:6663. doi: 10.3390/ijms22136663. PubMed DOI PMC
Dyszkiewicz-Konwińska M., Nawrocki M., Huang Y., Bryja A., Celichowski P., Jankowski M., Błochowiak K., Mehr K., Bruska M., Nowicki M., et al. New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation—A Primary Culture Approach. Int. J. Mol. Sci. 2018;19:1027. doi: 10.3390/ijms19041027. PubMed DOI PMC
Kranc W., Brązert M., Ożegowska K., Nawrocki M.M.J., Budna J., Celichowski P., Dyszkiewicz-Konwińska M., Jankowski M., Jeseta M., Pawelczyk L., et al. Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells—A Primary Culture Approach. Int. J. Mol. Sci. 2017;18:2673. doi: 10.3390/ijms18122673. PubMed DOI PMC
Ku C.S., Naidoo N., Wu M., Soong R. Studying the Epigenome Using next Generation Sequencing. J. Med. Genet. 2011;48:721–730. doi: 10.1136/jmedgenet-2011-100242. PubMed DOI
James C.G., Appleton C.T.G., Ulici V., Michael Underhill T., Beier F. Microarray Analyses of Gene Expression during Chondrocyte Differentiation Identifies Novel Regulators of Hypertrophy. Mol. Biol. Cell. 2005;16:5316–5333. doi: 10.1091/mbc.e05-01-0084. PubMed DOI PMC
Di Rosa M., Szychlinska M.A., Tibullo D., Malaguarnera L., Musumeci G. Expression of CHI3L1 and CHIT1 in Osteoarthritic Rat Cartilage Model. A Morphological Study. Eur. J. Histochem. 2014;58:213–221. doi: 10.4081/ejh.2014.2423. PubMed DOI PMC
Szychlinska M.A., Trovato F.M., Di Rosa M., Malaguarnera L., Puzzo L., Leonardi R., Castrogiovanni P., Musumeci G. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles. Int. J. Mol. Sci. 2016;17:359. doi: 10.3390/ijms17030359. PubMed DOI PMC
LaPointe V.L.S., Verpoorte A., Stevens M.M. The Changing Integrin Expression and a Role for Integrin Β8 in the Chondrogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE. 2013;8:e82035. doi: 10.1371/journal.pone.0082035. PubMed DOI PMC
Bendele F., Beier R., Terkeltaub J.S., Mort A.M., Schmidt A., Denise L., Cecil C., Thomas G., Appleton M.D. The Pattern Recognition Receptor CD36 Is a Chondrocyte Hypertrophy Marker Associated with Suppression of Catabolic Responses and Promotion of Repair Responses to Inflammatory Stimuli. J. Immunol. 2009;182:5024–5031. doi: 10.4049/JIMMUNOL.0803603. PubMed DOI PMC
KerkelÄ E., Böhling T., Herva R., Uria J.A., Saarialho-Kere U. Human Macrophage Metalloelastase (MMP-12) Expression Is Induced in Chondrocytes during Fetal Development and Malignant Transformation. Bone. 2001;29:487–493. doi: 10.1016/S8756-3282(01)00595-6. PubMed DOI
Wu S., Yoshiko Y., De Luca F. Stanniocalcin 1 Acts as a Paracrine Regulator of Growth Plate Chondrogenesis*. J. Biol. Chem. 2006;281:5120–5127. doi: 10.1074/jbc.M506667200. PubMed DOI
Ramesova A., Vesela B., Svandova E., Lesot H., Matalova E. Caspase-9 Inhibition Decreases Expression of Mmp9 during Chondrogenesis. Histochem. Cell Biol. 2022;157:403–413. doi: 10.1007/s00418-021-02067-9. PubMed DOI
Khan T.A., Kalsoom K., Iqbal A., Asif H., Rahman H., Farooq S.O., Naveed H., Nasir U., Amin M.U., Hussain M., et al. A Novel Missense Mutation in the NADPH Binding Domain of CYBB Abolishes the NADPH Oxidase Activity in a Male Patient with Increased Susceptibility to Infections. Microb. Pathog. 2016;100:163–169. doi: 10.1016/j.micpath.2016.09.020. PubMed DOI
Ma J., Jiang T., Tan L., Yu J.T. TYROBP in Alzheimer’s Disease. Mol. Neurobiol. 2015;51:820–826. doi: 10.1007/s12035-014-8811-9. PubMed DOI
Liang T., Chen J., Xu G.Y., Zhang Z., Xue J., Zeng H., Jiang J., Chen T., Qin Z., Li H., et al. STAT3 and SPI1, May Lead to the Immune System Dysregulation and Heterotopic Ossification in Ankylosing Spondylitis. BMC Immunol. 2022;23:3. doi: 10.1186/s12865-022-00476-6. PubMed DOI PMC
Mirza R., Qiao S., Tateyama K., Miyamoto T., Xiuli L., Seo H. 3β-Hydroxysterol-Delta24 Reductase Plays an Important Role in Long Bone Growth by Protecting Chondrocytes from Reactive Oxygen Species. J. Bone Miner. Metab. 2012;30:144–153. doi: 10.1007/s00774-011-0303-7. PubMed DOI
Jang Y., Jung H., Nam Y., Rim Y.A., Kim J., Jeong S.H., Ju J.H. Centrifugal Gravity-Induced BMP4 Induces Chondrogenic Differentiation of Adipose-Derived Stem Cells via SOX9 Upregulation. Stem Cell Res. Ther. 2016;7:184. doi: 10.1186/s13287-016-0445-6. PubMed DOI PMC
Kim B.S., Kang K.S., Kang S.K. Soluble Factors from ASCs Effectively Direct Control of Chondrogenic Fate. Cell Prolif. 2010;43:249–261. doi: 10.1111/j.1365-2184.2010.00680.x. PubMed DOI PMC
Shu B., Zhang M., Xie R., Wang M., Jin H., Hou W., Tang D., Harris S.E., Mishina Y., O’Keefe R.J., et al. BMP2, but Not BMP4, Is Crucial for Chondrocyte Proliferation and Maturation during Endochondral Bone Development. J. Cell Sci. 2011;124:3428–3440. doi: 10.1242/jcs.083659. PubMed DOI PMC
Sarem M., Otto O., Tanaka S., Shastri V.P. Cell Number in Mesenchymal Stem Cell Aggregates Dictates Cell Stiffness and Chondrogenesis. Stem Cell Res. Ther. 2019;10:10. doi: 10.1186/s13287-018-1103-y. PubMed DOI PMC
Mishra P.J., Mishra P.J., Humeniuk R., Medina D.J., Alexe G., Mesirov J.P., Ganesan S., Glod J.W., Banerjee D. Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells. Cancer Res. 2008;68:4331–4339. doi: 10.1158/0008-5472.CAN-08-0943. PubMed DOI PMC
Steinberg J., Ritchie G.R.S., Roumeliotis T.I., Jayasuriya R.L., Clark M.J., Brooks R.A., Binch A.L.A., Shah K.M., Coyle R., Pardo M., et al. Integrative Epigenomics, Transcriptomics and Proteomics of Patient Chondrocytes Reveal Genes and Pathways Involved in Osteoarthritis. Sci. Rep. 2017;7:8935. doi: 10.1038/s41598-017-09335-6. PubMed DOI PMC
Gingras H., Cases O., Krasilnikova M., Bérubé G., Nepveu A. Biochemical Characterization of the Mammalian Cux2 Protein. Gene. 2005;344:273–285. doi: 10.1016/j.gene.2004.11.008. PubMed DOI
Hartill V.L., van de Hoek G., Patel M.P., Little R., Watson C.M., Berry I.R., Shoemark A., Abdelmottaleb D., Parkes E., Bacchelli C., et al. DNAAF1 Links Heart Laterality with the AAA+ ATPase RUVBL1 and Ciliary Intraflagellar Transport. Hum. Mol. Genet. 2018;27:529–545. doi: 10.1093/hmg/ddx422. PubMed DOI PMC
Miao C., Jiang Q., Li H., Zhang Q., Bai B., Bao Y., Zhang T. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans. G3 Genes Genomes Genet. 2016;6:3307–3316. doi: 10.1534/g3.116.033696. PubMed DOI PMC
Chiesa A., Crisafulli C., Porcelli S., Han C., Patkar A.A., Lee S.J., Park M.H., Jun T.Y., Serretti A., Pae C.U. Influence of GRIA1, GRIA2 and GRIA4 Polymorphisms on Diagnosis and Response to Treatment in Patients with Major Depressive Disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2012;262:305–311. doi: 10.1007/s00406-011-0270-y. PubMed DOI
Kerner B., Jasinska A.J., DeYoung J., Almonte M., Choi O.W., Freimer N.B. Polymorphisms in the GRIA1 Gene Region in Psychotic Bipolar Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009;150:24–32. doi: 10.1002/ajmg.b.30780. PubMed DOI PMC
Tilley S.K., Kim W.Y., Fry R.C. Analysis of Bladder Cancer Tumor CpG Methylation and Gene Expression within The Cancer Genome Atlas Identifies GRIA1 as a Prognostic Biomarker for Basal-like Bladder Cancer. Am. J. Cancer Res. 2017;7:1850. PubMed PMC
Moffett J.R., Arun P., Ariyannur P.S., Garbern J.Y., Jacobowitz D.M., Namboodiri A.M.A. Extensive Aspartoacylase Expression in the Rat Central Nervous System. Glia. 2011;59:1414–1434. doi: 10.1002/glia.21186. PubMed DOI PMC
Chen T.Y., Li X., Hung C.H., Bahudhanapati H., Tan J., Kass D.J., Zhang Y. The Relaxin Family Peptide Receptor 1 (RXFP1): An Emerging Player in Human Health and Disease. Mol. Genet. Genom. Med. 2020;8:e1194. doi: 10.1002/mgg3.1194. PubMed DOI PMC
Valenti M.T., Carbonare L.D., Donatelli L., Bertoldo F., Zanatta M., Lo Cascio V. Gene Expression Analysis in Osteoblastic Differentiation from Peripheral Blood Mesenchymal Stem Cells. Bone. 2008;43:1084–1092. doi: 10.1016/j.bone.2008.07.252. PubMed DOI
Jiao K., Zhang J., Zhang M., Wei Y., Wu Y., Qiu Z.Y., He J., Cao Y., Hu J., Zhu H., et al. The Identification of CD163 Expressing Phagocytic Chondrocytes in Joint Cartilage and Its Novel Scavenger Role in Cartilage Degradation. PLoS ONE. 2013;8:e53312. doi: 10.1371/journal.pone.0053312. PubMed DOI PMC
Du Y., Duan T., Feng Y., Liu Q., Lin M., Cui J., Wang R.-F. LRRC25 Inhibits Type I IFN Signaling by Targeting ISG15-Associated RIG-I for Autophagic Degradation. EMBO J. 2018;37:351–366. doi: 10.15252/embj.201796781. PubMed DOI PMC
Wu L., Bluguermann C., Kyupelyan L., Latour B., Gonzalez S., Shah S., Galic Z., Ge S., Zhu Y., Petrigliano F.A., et al. Human Developmental Chondrogenesis as a Basis for Engineering Chondrocytes from Pluripotent Stem Cells. Stem Cell Rep. 2013;1:575–589. doi: 10.1016/j.stemcr.2013.10.012. PubMed DOI PMC
Ogueta S., Muoz J., Obregon E., Delgado-Baeza E., García-Ruiz J.P. Prolactin Is a Component of the Human Synovial Liquid and Modulates the Growth and Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Mol. Cell. Endocrinol. 2002;190:51–63. doi: 10.1016/S0303-7207(02)00013-8. PubMed DOI
Seriwatanachai D., Krishnamra N., Charoenphandhu N. Chondroregulatory Action of Prolactin on Proliferation and Differentiation of Mouse Chondrogenic ATDC5 Cells in 3-Dimensional Micromass Cultures. Biochem. Biophys. Res. Commun. 2012;420:108–113. doi: 10.1016/j.bbrc.2012.02.123. PubMed DOI
Cui Y., Yu J., Urban J.P.G., Young D.A. Differential Gene Expression Profiling of Metalloproteinases and Their Inhibitors: A Comparison between Bovine Intervertebral Disc Nucleus Pulposus Cells and Articular Chondrocytes. Spine. 2010;35:1101–1108. doi: 10.1097/BRS.0b013e3181c0c727. PubMed DOI
Ozkul Y., Galderisi U. The Impact of Epigenetics on Mesenchymal Stem Cell Biology. J. Cell. Physiol. 2016;231:2393–2401. doi: 10.1002/jcp.25371. PubMed DOI
Horton E.R., Vallmajo-Martin Q., Martin I., Snedeker J.G., Ehrbar M., Blache U. Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Adv. Healthc. Mater. 2020;9:1901669. doi: 10.1002/adhm.201901669. PubMed DOI
Barbet R., Peiffer I., Hutchins J.R.A., Hatzfeld A., Garrido E., Hatzfeld J.A. Expression of the 49 Human ATP Binding Cassette (ABC) Genes in Pluripotent Embryonic Stem Cells and in Early- and Late-Stage Multipotent Mesenchymal Stem Cells: Possible Role of ABC Plasma Membrane Transporters in Maintaining Human Stem Cell Pluripotency. Cell Cycle. 2012;11:1611–1620. doi: 10.4161/cc.20023. PubMed DOI
Sun H., Huang A., Cao S. Current Status and Prospects of Gene Therapy for the Inner Ear. Hum. Gene Ther. 2011;22:1311–1322. doi: 10.1089/hum.2010.246. PubMed DOI PMC
Xiao P., Guo S., Wen X., He Q.T., Lin H., Huang S.M., Gou L., Zhang C., Yang Z., Zhong Y.N., et al. Tethered Peptide Activation Mechanism of the Adhesion GPCRs ADGRG2 and ADGRG4. Nature. 2022;604:771–778. doi: 10.1038/s41586-022-04590-8. PubMed DOI
Chung J., Marini S., Pera J., Norrving B., Jimenez-Conde J., Roquer J., Fernandez-Cadenas I., Tirschwell D.L., Selim M., Brown D.L., et al. Genome-Wide Association Study of Cerebral Small Vessel Disease Reveals Established and Novel Loci. Brain. 2019;142:3176. doi: 10.1093/brain/awz233. PubMed DOI PMC