Assembly and Annotation of Kinetoplastid and Diplonemid Mitochondrial Genomes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Diplonemids, Kinetoplastea, Mitochondrion, Next-generation sequencing, RNA editing, Trypanosomatids,
- MeSH
- anotace sekvence * metody MeSH
- editace RNA MeSH
- genom mitochondriální * MeSH
- genom protozoální MeSH
- Kinetoplastida * genetika MeSH
- transkriptom MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
This chapter outlines the assembly and annotation of mitochondrial genomes and transcriptomes of kinetoplastids and diplonemids using high-throughput sequencing data. The mitochondrial genomes of these protists are highly atypical, characterized by multipartition and extensive RNA editing. These complexities pose significant challenges for genome assembly, gene prediction, and transcript reconstruction. Here, we describe analytical strategies developed in our laboratories that address these issues.
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Faculty of Biology Lomonosov Moscow State University Moscow Russia
Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czechia
Zobrazit více v PubMed
Záhonová K, Lax G, Leonard G et al (2021) Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoan. BMC Biol 19:103 PubMed PMC
Vickerman K (1976) Comparative cell biology of the kinetoplastid flagellates. In: Vickerman K, Preston TM (eds) Biology of Kinetoplastida, vol 1. Academic, London, pp 35–130
Kostygov AY, Karnkowska A, Votýpka J et al (2021) Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11:200407 PubMed PMC
Lukeš J, Guilbride DL, Votýpka J et al (2002) Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1(4):495–502 PubMed PMC
d’Avila-Levy CM, Boucinha C, Kostygov A et al (2015) Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz 110(8):956–965 PubMed PMC
Moreira D, López-García P, Vickerman K (2004) An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875 PubMed
Stuart K, Brun R, Croft S et al (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118(4):1301–1310 PubMed PMC
Jensen RE, Englund PT (2012) Network news: the replication of kinetoplast DNA. Ann Rev Microbiol 66:473–491
Yurchenko V, Hobza R, Benada O et al (1999) Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp Parasitol 92(3):215–218 PubMed
Gerasimov ES, Afonin DA, Korzhavina OA et al (2022) Mitochondrial RNA editing in Trypanoplasma borreli: new tools, new revelations. Comput Struct Biotechnol J 20:6388–6402 PubMed PMC
Camacho E, Rastrojo A, Sanchiz A et al (2019) Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes 10(10):758 PubMed PMC
Afonin DA, Gerasimov ES, Škodová-Sveráková I et al (2024) Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment. Nucleic Acids Res 52:3870–3885 PubMed PMC
Berná L, Greif G, Pita S et al (2021) Maxicircle architecture and evolutionary insights into Trypanosoma cruzi complex. PLoS Negl Trop Dis 15(8):e0009719 PubMed PMC
Gerasimov ES, Zamyatnina KA, Matveeva NS et al (2020) Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens 9(2):100 PubMed PMC
Benne R, Van den Burg J, Brakenhoff JP et al (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826 PubMed
Read LK, Lukeš J, Hashimi H (2016) Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA 7(1):33–51 PubMed
Maslov DA, Opperdoes FR, Kostygov AY et al (2019) Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146(1):1–27 PubMed
Koslowsky D, Sun Y, Hindenach J et al (2014) The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res 42(3):1873–1886 PubMed
Gerasimov ES, Kostygov AY, Yan S et al (2012) From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur J Protistol 48(3):185–193 PubMed
Aphasizheva I, Alfonzo J, Carnes J et al (2020) Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol 36(4):337–355 PubMed PMC
Gerasimov ES, Gasparyan AA, Afonin DA et al (2021) Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res 49(6):3354–3370 PubMed PMC
Seiwert SD, Stuart K (1994) RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science 266(5182):114–117 PubMed
Gerasimov ES, Afonin DA, Škodová-Sveráková I et al (2025) Evolutionary divergent kinetoplast genome structure and RNA editing patterns in the trypanosomatid Vickermania. Proc Natl Acad Sci USA 122(15):e2426887122 PubMed PMC
Hong M, Simpson L (2003) Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist 154(2):265–279 PubMed
Yurchenko V, Kolesnikov AA (2001) Minicircular kinetoplast DNA of Trypanosomatidae. Mol Biol (Mosk) 35(1):1–10
Thomas S, Martinez LL, Westenberger SJ et al (2007) A population study of the minicircles in Trypanosoma cruzi: predicting guide RNAs in the absence of empirical RNA editing. BMC Genomics 8:133 PubMed PMC
Cooper S, Wadsworth ES, Ochsenreiter T et al (2019) Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res 47(21):11304–11325 PubMed PMC
Cooper S, Wadsworth ES, Schnaufer A et al (2022) Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA 28(7):972–992 PubMed PMC
Zimmer SL, Simpson RM, Read LK (2018) High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip Rev RNA 9(5):e1487 PubMed PMC
Gerasimov ES, Gasparyan AA, Kaurov I et al (2018) Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res 46(2):765–781 PubMed
Simpson RM, Bruno AE, Bard JE et al (2016) High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 22(5):677–695 PubMed PMC
Tashyreva D, Simpson AGB, Prokopchuk G et al (2022) Diplonemids – a review on “new” flagellates on the oceanic block. Protist 173(2):125868 PubMed
Vlcek C, Marande W, Teijeiro S et al (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 39(3):979–988 PubMed
Valach M, Moreira S, Hoffmann S et al (2017) Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep 7(1):14166 PubMed PMC
Kaur B, Záhonová K, Valach M et al (2020) Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 48(5):2694–2708 PubMed PMC
Moreira S, Valach M, Aoulad-Aissa M et al (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res 44(10):4907–4919 PubMed PMC
Bushnell B, Rood J, Singer E (2017) BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12(10):e0185056 PubMed PMC
Quinlan AR (2014) BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11.12.11–11.12.34
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421 PubMed PMC
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359 PubMed PMC
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595 PubMed PMC
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760 PubMed PMC
Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinf 6:31
Andrews S (2019) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc . Accessed 27 Apr 2025
Chen S (2023) Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2(2):e107 PubMed PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA (2019) Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37(5):540–546 PubMed
Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv 1207:3907
Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649 PubMed PMC
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780 PubMed PMC
Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10(2):1–4
Prjibelski A, Antipov D, Meleshko D et al (2020) Using SPAdes de novo assembler. Curr Protoc Bioinformatics 70(1):e102 PubMed
Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652 PubMed PMC
Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158 PubMed PMC
Van den Broeck F, Savill NJ, Imamura H et al (2020) Ecological divergence and hybridization of Neotropical Leishmania parasites. Proc Natl Acad Sci USA 117(40):25159–25168 PubMed PMC
Geerts M, Schnaufer A, Van den Broeck F (2021) rKOMICS: an R package for processing mitochondrial minicircle assemblies in population-scale genome projects. BMC Bioinf 22(1):468
Yabuki A, Tanifuji G, Kusaka C et al (2016) Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol Evol 8(9):2870–2878 PubMed PMC
Duarte M, Tomás AM (2014) The mitochondrial complex I of trypanosomatids–an overview of current knowledge. J Bioenerg Biomembr 46(4):299–311 PubMed
Opperdoes FR, Michels PA (2008) Complex I of Trypanosomatidae: does it exist? Trends Parasitol 24(7):310–317 PubMed
Kannan S, Burger G (2008) Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2. BMC Genomics 9:455 PubMed PMC
Valach M, Leveille-Kunst A, Gray MW, Burger G (2018) Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem 293(41):16043–16056 PubMed PMC
Ramrath DJF, Niemann M, Leibundgut M et al (2018) Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362(6413):eaau7735 PubMed
Valach M, Moreira S, Petitjean C et al (2023) Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21(1):99 PubMed PMC