Současný trend a zvyšující se znalosti o genetických příčinách vzniku a progresi zhoubných nádorů otevírá nové možnosti pro jejich léčbu. Nicméně je nutné výsledky získané pomocí klasických metod spojit s citlivými, molekulárně patologickými metodami. Metodou, která splňuje požadovaná kritéria, je multiplexní na ligaci závislá PCR reakce (MLPA) založená na multiplexní PCR reakci. Touto metodou jsou detekovány jak změny v počtu kopií genu, tak i metylační status DNA ve specifických oblastech a v neposlední řadě i bodové mutace. MLPA reakce je použitelná i na vysoce fragmentované DNA. Zároveň se jedná o metodu robustní, kterou lze provádět na standardních termocyklerech, fluorescenční značení vyžaduje analýzu pomocí automatického sekvenátoru. V jedné reakci lze testovat až 50 genetických markerů, což je počet, který umožňuje diagnostický a prognostický závěr. Všechny tyto vlastnosti vedou k rutinnímu využití MLPA analýzy nejen při diagnostice, ale i ve výzkumu nádorů. Předkládaný článek si klade za cíl popsat jednotlivé typy MLPA reakcí, její výhody, ale i potenciální úskalí.
The current progress and increasing knowledge about the genetic causes of cancer opens up new possibilities for its treatment. However, it is necessary to combine the results obtained using classical pathological methods with sensitive, multiplex molecular pathological methods. The method that meets the required criteria is MLPA based on multiplex PCR reaction. This method detects both changes in gene copy number and DNA methylation and, last but not least, point mutations. The MLPA reaction is applicable to even highly fragmented DNA. At the same time, it is a robust method that can be performed on standard thermocyclers, the fluorescent tip label requires automatic sequencers. Up to 50 genetic markers can be tested in one reaction, a number that allows a diagnostic and prognostic conclusion. All these features lead to the routine use of MLPA analysis not only in diagnosis but also in cancer research. The present article aims to summarize the different types of MLPA reactions, its benefits, but also the potential pitfalls.
- MeSH
- diagnostické techniky molekulární MeSH
- DNA genetika MeSH
- genetické markery MeSH
- genová dávka MeSH
- lidé MeSH
- metylace DNA MeSH
- nádory centrálního nervového systému * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Krátce po prvním oficiálním oznámení Světové zdravotnické organizace byl v Liberci odhalen a potvrzen první český případ nákazy COVID-19 způsobené variantou SARS-CoV-2 omikron. Zároveň se jednalo o jeden z prvních zachycených evropských případů. Za méně než 24 hodin od ohlášení suspekce praktickým lékařem, bezodkladně reagujícího na první informaci o existenci nové varianty koronaviru ve sdělovacích prostředcích, byla tato varianta potvrzena sekvenací, kterou byla laboratoř schopna provést ihned po vyžádání. To umožnilo okamžité trasování kontaktů, při němž bylo vyšetřeno a izolováno jedenáct osob. Jedna z nich byla testována pozitivně, šíření viru bylo izolací zastaveno. Případ mimo jiné ukazuje na snadné šíření viru SARS-CoV-2 na dlouhé vzdálenosti.
Shortly after the WHO's first notice a suspected case of omicron SARS-CoV-2 was reported in Liberec, Czech Republic. The primary goal of the following actions was to test the presence of the variant and stop the spread of the virus variant. On November 25 a sixty-year-old lady, who had recently returned from Namibia, visited a GP with flu-like symptoms and a rash on her chest. The antigen test was positive for SARS-CoV-2, a PCR test was planned. At that time, it was not known that a new variant of concern was spreading from Africa. On November 26 in the morning the GP announced a suspected omicron case to the Regional public health authority, who organized the following steps. A mobile sampling team was sent to the patient's home immediately, sample transported into the regional hospital and analyzed with the help of the national reference laboratory. The captured virus SARS-CoV-2 fitted the description of the omicron variant, was shared in the GISAID database and named hCoV-19/Czech Republic/KNL_2021-110119140/2021. Contact tracing was started immediately, eleven persons were tested and quarantined. One of them positive with no further spread. It is the first documented omicron case in the Czech Republic and one of the first cases in Europe, with an excellent systemic response to the alert. The laboratory was able to detect the omicron variant instantly after the request. This case also demonstrates how easily the virus spreads on long distances and how important it might be to increase the uptake of the booster vaccine.
- Klíčová slova
- SARS-CoV-2 omikron,
- MeSH
- COVID-19 * diagnóza přenos MeSH
- hlášení nemocí MeSH
- lidé středního věku MeSH
- lidé MeSH
- testování na COVID-19 MeSH
- trasování kontaktů * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- Geografické názvy
- Česká republika MeSH
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Application of Fenton's reagent and enhanced reductive dechlorination are currently the most common remediation strategies resulting in removal of chlorinated ethenes. In this study, the influence of such techniques on organohalide-respiring bacteria was assessed at a site contaminated by chlorinated ethenes using a wide spectrum of molecular genetic markers, including 16S rRNA gene of the organohalide-respiring bacteria Dehaloccocoides spp., Desulfitobacterium and Dehalobacter; reductive dehalogenase genes (vcrA, bvcA) responsible for dechlorination of vinyl chloride and sulphate-reducing and denitrifying bacteria. In-situ application of hydrogen peroxide to induce a Fenton-like reaction caused an instantaneous decline in all markers below detection limit. Two weeks after application, the bvcA gene and Desulfitobacterium relative abundance increased to levels significantly higher than those prior to application. No significant decrease in the concentration of a range of chlorinated ethenes was observed due to the low hydrogen peroxide dose used. A clear increase in marker levels was also observed following in-situ application of sodium lactate, which resulted in a seven-fold increase in Desulfitobacterium and a three-fold increase in Dehaloccocoides spp. after 70 days. An increase in the vcrA gene corresponded with increase in Dehaloccocoides spp. Analysis of selected markers clearly revealed a positive response of organohalide-respiring bacteria to biostimulation and unexpectedly fast recovery after the Fenton-like reaction.
- MeSH
- Bacteria metabolismus MeSH
- bakteriální RNA genetika MeSH
- biodegradace MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- chlor metabolismus MeSH
- chlorované uhlovodíky metabolismus MeSH
- genetické markery genetika MeSH
- katalýza * MeSH
- natriumlaktát aplikace a dávkování metabolismus MeSH
- oxidace-redukce MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH