Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2-3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine.
- MeSH
- biokompatibilní materiály * chemie toxicita MeSH
- chirurgické síťky * MeSH
- incizní kýla chirurgie MeSH
- myši MeSH
- nanovlákna * chemie toxicita MeSH
- polyestery * chemie toxicita MeSH
- polypropyleny * chemie toxicita MeSH
- proliferace buněk účinky léků MeSH
- trombocyty cytologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Incisional hernia affects up to 20% of patients after abdominal surgery. Unlike other types of hernia, its prognosis is poor, and patients suffer from recurrence within 10 years of the operation. Currently used hernia-repair meshes do not guarantee success, but only extend the recurrence-free period by about 5 years. Most of them are nonresorbable, and these implants can lead to many complications that are in some cases life-threatening. Electrospun nanofibers of various polymers have been used as tissue scaffolds and have been explored extensively in the last decade, due to their low cost and good biocompatibility. Their architecture mimics the natural extracellular matrix. We tested a biodegradable polyester poly-ε-caprolactone in the form of nanofibers as a scaffold for fascia healing in an abdominal closure-reinforcement model for prevention of incisional hernia formation. Both in vitro tests and an experiment on a rabbit model showed promising results.
- MeSH
- biomechanika MeSH
- břicho chirurgie MeSH
- buňky 3T3 MeSH
- chirurgické síťky MeSH
- hernie prevence a kontrola MeSH
- histocytochemie MeSH
- hojení ran účinky léků MeSH
- králíci MeSH
- mezibuněčné signální peptidy a proteiny chemie farmakologie terapeutické užití MeSH
- myši MeSH
- nanovlákna chemie terapeutické užití MeSH
- polyestery chemie terapeutické užití MeSH
- polypropyleny chemie terapeutické užití MeSH
- pooperační komplikace prevence a kontrola MeSH
- řízená tkáňová regenerace MeSH
- techniky uzavření břišních poranění přístrojové vybavení MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH