Circadian regulation of behavior worsens with age, however, the mechanism behind this phenomenon is still poorly understood. Specifically, it is not clear to what extend the ability of the circadian clock in the suprachiasmatic nuclei (SCN) to generate the rhythm is affected by aging. This study aimed to ascertain the effect of aging on the functioning of the SCN of mPer2Luciferasemice under unnatural lighting conditions, such as constant light (LL). Under LL, which worsened the age-induced effect on behavioral rhythms, a marginal age-dependent effect on in vitro rhythmicity in explants containing the middle, but not the rostral/caudal, regions of the SCN was apparent; the proportion of mice in which middle-region SCN explants were completely arrhythmic or had an extremely long period (>30 h) was 47% in aged mice and 27% in adults. The results suggest that in some of the aged animals, LL may weaken the coupling among oscillators in specific sub-regions of the SCN, leaving other sub-regions better synchronized. In the standard light/dark cycle and in constant darkness, the SCN ability to produce bioluminescence rhythms in vitro was not compromised in aged mice although aging significantly affected their SCN-driven locomotor activity rhythms. Therefore, our results demonstrate that although age worsened the SCN output rhythm, the SCN molecular core clock mechanism itself was relatively resilient to aging in these same animals. The results suggest the involvement of pathways downstream of the core clock mechanism which are responsible for this phenomenon.
- MeSH
- chování zvířat fyziologie MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- cirkadiánní rytmus fyziologie MeSH
- fotoperioda * MeSH
- luciferasy MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus suprachiasmaticus fyziologie MeSH
- pohybová aktivita MeSH
- regulace genové exprese fyziologie MeSH
- stárnutí fyziologie MeSH
- světlo * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Exposure to environmental conditions that disturb the daily rhythms has been shown to enhance the proinflammatory responses of immunostimulant-challenged immune system. However, it is not known whether circadian disturbances may stimulate unchallenged immune responses and thus contribute per se to the development of inflammation-related diseases. Our aim was to ascertain an effect of various conditions threatening the behavioral activity/rest cycle regulation, namely aging with or without melatonin, 6 h advance/delay phase shifts in the light/dark cycle repeated with a 2-day frequency and constant light, on expression of immune markers in the rat colon. The impact of these conditions on parameters of behavioral activity and mRNA levels of selected immune markers in the colonic mucosa of Wistar rats, namely TNFα (Tnf), IL1a (Il1a), IL17RA (Il17ra), STAT3 (Stat3) and Rgs16 (Rsg16), were detected. Our results demonstrate that aging with or without melatonin as well as repeated 6 h advance/delay phase shifts in the light/dark cycle, which increased inactivity as a correlate of sleep during the dark phase of the light/dark cycle (i.e. during the active phase for nocturnal animals), had a minor effect on immune state in the colonic mucosa; all these conditions caused downregulation of gene Rgs16 which is involved in attenuation of the inflammatory response in the colon but did not affect expression of the other immune markers. Interestingly, a long-term absence of melatonin facilitated the aging-induced effect on immune state in the colon. In contrast, exposure to constant light, which perturbed the interval of inactivity (sleep) and led to the complete abolishment of activity/inactivity cycles, activated robustly proinflammatory state in the colon selectively via Stat3-dependent pathway. In spite all these experimental conditions (aging with or without melatonin, shifts in light/dark cycles, constant light) perturbed the activity/rest cycles, none of them induced sleep deprivation. These results provided the first evidence that disruptions in the behavioral activity/inactivity cycles may spontaneously (without immuno-stimulant) induce selective proinflammatory responses in the colonic mucosa. Such effects may take part in the mechanisms of modern lifestyle-induced inflammatory diseases of the gut. ABBREVIATIONS: B2M: β2-microglobulin; DSS: dextran sodium sulfate; Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Ifng: interferon g; Il1a: interleukin 1a; Il1b: interleukin 1b; Il2: interleukin 2; Il6: interleukin 6; Il17ra: interleukin 17 receptor a; LD: light/dark cycle; LL: constant light; LPS: lipopolysaccharide; Mntr1a: melatonin receptor 1a; PINX: pinealectomy; Rgs16: regulator of G protein signaling 16; RT qPCR: quantitative reverse transcription polymerase chain reaction; Stat3: signal transducer and activator of transcription 3; Th17: type 17 T helper cells; Tnfα: tumor necrosis factor α; Tnfrsf1b: tumor necrosis factor receptor superfamily member 1b.
- MeSH
- časové faktory MeSH
- cirkadiánní rytmus fyziologie MeSH
- cykly aktivity účinky léků MeSH
- fotoperioda MeSH
- kolon účinky léků metabolismus MeSH
- melatonin farmakologie MeSH
- pohybová aktivita účinky léků fyziologie MeSH
- potkani Wistar MeSH
- spánek účinky léků fyziologie MeSH
- spánková deprivace farmakoterapie MeSH
- světlo MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Colonic function is controlled by an endogenous clock that allows the colon to optimize its function on the daytime basis. For the first time, this study provided evidence that the clock is synchronized by rhythmic hormonal signals. In rat colon, adrenalectomy decreased and repeated applications of dexamethasone selectively rescued circadian rhythm in the expression of the clock gene Per1. Dexamethasone entrained the colonic clock in explants from mPer2Lucmice in vitro. In contrast, pinealectomy had no effect on the rat colonic clock, and repeated melatonin injections were not able to rescue the clock in animals maintained in constant light. Additionally, melatonin did not entrain the clock in colonic explants from mPer2Lucmice in vitro. However, melatonin affected rhythmic regulation of Nr1d1 gene expression in vivo. The findings provide novel insight into possible beneficial effects of glucocorticoids in the treatment of digestive tract-related diseases, greatly exceeding their anti-inflammatory action.
- MeSH
- cirkadiánní hodiny fyziologie MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- epifýza mozková chirurgie MeSH
- fotoperioda * MeSH
- inbrední kmeny myší MeSH
- kolon fyziologie MeSH
- krysa rodu rattus MeSH
- mutace MeSH
- myši MeSH
- nadledviny chirurgie MeSH
- potkani Wistar MeSH
- regulace genové exprese fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Colonic morphology and function change significantly during ontogenesis. In mammals, many colonic physiological functions are temporally controlled by the circadian clock in the colon, which is entrained by the central circadian clock in the suprachiasmatic nuclei (SCN). The aim of this present study was to ascertain when and how the circadian clock in the colon develops during the perinatal period and whether maternal cues and/or the developing pup SCN may influence the ontogenesis of the colonic clock. Daily profiles of clock genes Per1, Per2, Cry1, Cry2, Rev-erbα, Bmal1, and Clock expression in the colon underwent significant modifications since embryonic day 20 (E20) through postnatal days (P) 2, 10, 20, and 30 via changes in the mutual phasing among the individual clock gene expression rhythms, their relative phasing to the light-dark regime, and their amplitudes. An adult-like state was achieved around P20. The foster study revealed that during the prenatal period, the maternal circadian phase may partially modulate development of the colonic clock. Postnatally, the absence and/or presence of rhythmic maternal care affected the phasing of the clock gene expression profiles in pups at P10 and P20. A reversal in the colonic clock phase between P10 and P20 occurred in the absence of rhythmic signals from the pup SCN. The data demonstrate ontogenetic maturation of the colonic clock and stress the importance of prenatal and postnatal maternal rhythmic signals for its development. These data may contribute to the understanding of colonic function-related diseases in newborn children.
- MeSH
- časové faktory MeSH
- cirkadiánní rytmus - signální peptidy a proteiny genetika metabolismus MeSH
- cirkadiánní rytmus * genetika MeSH
- gestační stáří MeSH
- kalorická restrikce MeSH
- kolon embryologie metabolismus MeSH
- krysa rodu rattus MeSH
- mateřské chování MeSH
- morfogeneze MeSH
- novorozená zvířata MeSH
- nucleus suprachiasmaticus embryologie metabolismus MeSH
- potkani Wistar MeSH
- signální transdukce MeSH
- stravovací zvyklosti MeSH
- těhotenství MeSH
- vývojová regulace genové exprese MeSH
- zpožděný efekt prenatální expozice MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The mammalian timekeeping system generates circadian oscillations that rhythmically drive various functions in the body, including metabolic processes. In the liver, circadian clocks may respond both to actual feeding conditions and to the metabolic state. The temporal restriction of food availability to improper times of day (restricted feeding, RF) leads to the development of food anticipatory activity (FAA) and resets the hepatic clock accordingly. The aim of this study was to assess this response in a rat strain exhibiting complex pathophysiological symptoms involving spontaneous hypertension, an abnormal metabolic state and changes in the circadian system, i.e., in spontaneously hypertensive rats (SHR). The results revealed that SHR were more sensitive to RF compared with control rats, developing earlier and more pronounced FAA. Whereas in control rats, the RF only redistributed the activity profiles into two bouts (one corresponding to FAA and the other corresponding to the dark phase), in SHR the RF completely phase-advanced the locomotor activity according to the time of food presentation. The higher behavioral sensitivity to RF was correlated with larger phase advances of the hepatic clock in response to RF in SHR. Moreover, in contrast to the controls, RF did not suppress the amplitude of the hepatic clock oscillation in SHR. In the colon, no significant differences in response to RF between the two rat strains were detected. The results suggested the possible involvement of the Bmal2 gene in the higher sensitivity of the hepatic clock to RF in SHR because, in contrast to the Wistar rats, the rhythm of Bmal2 expression was advanced similarly to that of Bmal1 under RF. Altogether, the data demonstrate a higher behavioral and circadian responsiveness to RF in the rat strain with a cardiovascular and metabolic pathology and suggest a likely functional role for the Bmal2 gene within the circadian clock.
- MeSH
- cirkadiánní hodiny genetika fyziologie MeSH
- cirkadiánní rytmus genetika fyziologie MeSH
- exprese genu genetika MeSH
- játra metabolismus fyziologie MeSH
- kolon metabolismus fyziologie MeSH
- krysa rodu rattus MeSH
- pohybová aktivita genetika fyziologie MeSH
- potkani inbrední SHR MeSH
- potkani Wistar MeSH
- potraviny MeSH
- proteiny CLOCK genetika metabolismus MeSH
- stravovací zvyklosti fyziologie MeSH
- transkripční faktory ARNTL genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Physiological functions of the gastrointestinal tract (GIT) are temporally controlled such that they exhibit circadian rhythms. The circadian rhythms are synchronized with the environmental light-dark cycle via signaling from the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus, and by food intake. The aim of the study was to determine the extent to which disturbance in the SCN signaling via prolonged exposure to constant light affects circadian rhythms in the liver, duodenum, and colon, as well as to determine whether and to what extent food intake can restore rhythmicity in individual parts of the GIT. Adult male rats were maintained in constant light (LL) for 30 days and fed ad libitum throughout the entire interval or exposed to a restricted feeding (RF) regime for the last 14 days in LL. Locomotor and feeding behaviors were recorded throughout the experiment. On the 30th day, daily expression profiles of clock genes (Per1, Per2, Rev-erbα, and Bmal1) and of clock-controlled genes (Wee1 and Dbp) were measured by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in the duodenum, colon, and liver. By the end of the LL exposure, rats fed ad libitum had completely lost their circadian rhythms in activity and food intake. Daily expression profiles of clock genes and clock-controlled genes in the GIT were impaired to an extent depending on the tissue and gene studied, but not completely abolished. In the liver and colon, exposure to LL abolished circadian rhythms in expression of Per1, Per2, Bmal1, and Wee1, whereas it impaired, but preserved, rhythms in expression of Rev-erbα and Dbp. In the duodenum, all but Wee1 expression rhythms were preserved. Restricted feeding restored the rhythms to a degree that varied with the tissue and gene studied. Whereas in the liver and duodenum the profiles of all clock genes and clock-controlled genes became rhythmic, in the colon only Per1, Bmal1, and Rev-erbα-but not Per2, Wee1, and Dbp-were expressed rhythmically. The data demonstrate a greater persistence of the rhythmicity of the circadian clocks in the duodenum compared with that in the liver and colon under conditions when signaling from the SCN is disrupted. Moreover, disrupted rhythmicity may be restored more effectively by a feeding regime in the duodenum and liver compared to the colon.
- MeSH
- časové faktory MeSH
- cirkadiánní hodiny fyziologie účinky záření MeSH
- duodenum fyziologie MeSH
- fotoperioda MeSH
- játra fyziologie MeSH
- kolon fyziologie MeSH
- krysa rodu rattus MeSH
- pohybová aktivita MeSH
- potkani Wistar MeSH
- potravinová deprivace MeSH
- regulace genové exprese fyziologie účinky záření MeSH
- stanovení celkové genové exprese MeSH
- světlo MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Circadian clocks were recently discovered in the rat and mouse colon as well as mouse stomach and jejunum. The aim of this study was to determine whether clocks in the upper part of the gut are synchronized with those in the lower part, or whether there is a difference in their circadian phases. Moreover, the profiles of core clock-gene expression were compared with the profiles of the clock-driven Wee1 gene expression in the upper and lower parts of the gut. Adult rats were transferred to constant darkness on the day of sampling. 24 h expression profiles of the clock genes Per1, Per2, Rev-erbalpha, and Bmal1 and the cell-cycle regulator Wee1 were examined by a reverse transcriptase-polymerase chain reaction within the epithelium of the rat duodenum, ileum, jejunum, and colon. In contrast to the duodenum, the rhythms in expression of all genes but Rev-erbalpha and Bmal1 in the colon exhibited non-sinusoidal profiles. Therefore, a detailed analysis of the gene expression every 1 h within the 12 h interval corresponding to the previous lights-on was performed. The data demonstrate that rhythmic profiles of the clock gene Per1, Per2, Bmal1, Rev-erbalpha, and clock-driven Wee1 expression within the epithelium from different parts of the rat gut exhibited a difference in phasing, such that the upper part of the gut, as represented by the duodenum, was phase-advanced to the lower part, as represented by the distal colon. Our data demonstrate that the circadian clocks within each part of the gut are mutually synchronized with a phase delay in the cranio-caudal axis. Moreover, they support the view that the individual circadian clocks may control the timing of cell cycle within different regions of the gut.
- MeSH
- cirkadiánní rytmus fyziologie genetika MeSH
- DNA primery MeSH
- duodenum fyziologie MeSH
- gastrointestinální motilita MeSH
- gastrointestinální trakt fyziologie MeSH
- ileum fyziologie MeSH
- jaderné proteiny genetika MeSH
- jejunum fyziologie MeSH
- kolon fyziologie MeSH
- krysa rodu rattus MeSH
- messenger RNA genetika izolace a purifikace MeSH
- myši MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potkani Wistar MeSH
- proteiny buněčného cyklu genetika MeSH
- střevní sliznice fyziologie MeSH
- světlo MeSH
- tma MeSH
- tyrosinkinasy genetika MeSH
- žaludeční sliznice fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH