Disease-suppressive soils encompass specific plant-pathogen-microbial interactions and represent a rare example of an agroecosystem where soil conditions and microbiome together prevent the pathogen from causing disease. Such soils have the potential to serve as a model for characterizing soil pathogen-related aspects of soil health, but the mechanisms driving the establishment of suppressive soils vary and are often poorly characterized. Yet, they can serve as a resource for identifying markers for beneficial activities of soil microorganisms concerning pathogen prevention. Many recent studies have focused on the nature of disease-suppressive soils, but it has remained difficult to predict where and when they will occur. This review outlines current knowledge on the distribution of these soils, soil manipulations leading to pathogen suppression, and markers including bacterial and fungal diversity, enzymes, and secondary metabolites. The importance to consider soil legacy in research on the principles that define suppressive soils is also highlighted. The goal is to extend the context in which we understand, study, and use disease-suppressive soils by evaluating the relationships in which they occur and function. Finally, we suggest that disease-suppressive soils are critical not only for the development of indicators of soil health, but also for the exploration of general ecological principles about the surrounding landscape, effects of deeper layers of the soil profile, little studied soil organisms, and their interactions for future use in modern agriculture.
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
The severity of common scab (CS) of potatoes has been correlated with multiple environmental factors. This study aimed at separating the effect of factors related to local conditions from those correlated to the disease development at all studied sites using a mathematical adjustment of the variables' means for site and field. The experiment was conducted at two sites differing in soil conditions, where a field with low disease severity occurs next to one with high severity. Three cultivars susceptible to CS were grown in four replicates on each field. Bacteria, actinobacteria and the txtB gene, involved in the biosynthesis of the main CS pathogenicity factor, thaxtomin, were quantified by real-time PCR. Bulk soil, tuberosphere soil and potato periderm were characterized by carbon, nitrogen, phosphorus, sulfur, calcium, magnesium and iron contents. The adjustment of the data for field effects eliminated the confounding local conditions and showed that at all fields the CS severity was negatively correlated with soil S content while the number of txtB gene copies was positively correlated with soil C and N contents. Thus, those factors might have a more general relationship to the pathogen occurrence and disease severity, which needs to be verified in other environmental conditions.
BACKGROUND: Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. RESULTS: Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. CONCLUSIONS: The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.
- MeSH
- ABC transportéry genetika MeSH
- Actinobacteria klasifikace účinky léků genetika izolace a purifikace MeSH
- antibakteriální látky biosyntéza MeSH
- bakteriální léková rezistence * MeSH
- fylogeneze * MeSH
- geny rRNA MeSH
- methyltransferasy genetika MeSH
- molekulární sekvence - údaje MeSH
- půdní mikrobiologie MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Common scab of potatoes is a disease, which is difficult to manage due to complex interactions of the pathogenic bacteria (Streptomyces spp.) with soil, microbial community and potato plants. In Bohemian-Moravian Highlands in the Czech Republic two sites (Vyklantice and Zdirec) were selected for a study of common scab disease suppressivity. At both sites, a field with low disease severity occurs next to one with high severity and the situation was regularly observed over four decades although all four fields undergo a crop rotation. In the four fields, quantities of bacteria, actinobacteria and the gene txtB from the biosynthetic gene cluster of thaxtomin, the main pathogenicity factor of common scab, were analyzed by real-time PCR. Microbial community structure was compared by terminal fragment length polymorphism analysis. Soil and potato periderm were characterized by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium, and iron. Quality of organic matter was assessed by high performance liquid chromatography of soil extracts. The study demonstrated that the suppressive character of the fields is locally specific. At Zdirec, the suppressivity was associated with low txtB gene copies in bulk soil, while at Vyklantice site it was associated with low txtB gene copies in the tuberosphere. The differences were discussed with respect to the effect of abiotic conditions at Zdirec and interaction between potato plant and soil microbial community at Vyklantice. Soil pH, Ca soil content or cation concentrations, although different were not in the range to predict the disease severity. Low severity of common scab was associated with low content of soil C, N, C/N, Ca and Fe suggesting that oligotrophic conditions may be favorable to common scab suppression.
- MeSH
- bakteriální geny * MeSH
- hlízy rostlin mikrobiologie MeSH
- indoly metabolismus MeSH
- multigenová rodina * MeSH
- nemoci rostlin mikrobiologie MeSH
- piperaziny metabolismus MeSH
- polymorfismus délky restrikčních fragmentů * MeSH
- půdní mikrobiologie * MeSH
- Solanum tuberosum mikrobiologie MeSH
- Streptomyces genetika metabolismus patogenita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- bakteriální nálož MeSH
- biodiverzita MeSH
- DNA bakterií chemie genetika MeSH
- dusík analýza MeSH
- fylogeneze MeSH
- houby klasifikace genetika izolace a purifikace MeSH
- koncentrace vodíkových iontů MeSH
- methyltransferasy genetika MeSH
- molekulární sekvence - údaje MeSH
- organické látky analýza MeSH
- počet mikrobiálních kolonií MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rostliny mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- uhlík analýza MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH