Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
- MeSH
- cirkadiánní hodiny * fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus suprachiasmaticus * metabolismus fyziologie MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- transkripční faktory ARNTL metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
STUDY OBJECTIVES: Social jetlag manifests as a difference in sleep timing on workdays and free days. Social jetlag is often associated with shorter, lower-quality sleep, so it is unclear how much the chronic circadian misalignment contributes to observed negative health outcomes. We aimed to (1) investigate associations between social jetlag, chronotype (one of its determinants), and the levels of health markers, (2) describe factors associated with social jetlag, and (3) examine whether working from home can reduce social jetlag. METHODS: Adult respondents participated in a nationally representative longitudinal survey of Czech households (individuals in each wave: n2018/19/20 = 5132/1957/1533), which included Munich ChronoType Questionnaire to evaluate chronotype and social jetlag. A subset provided blood samples (n2019 = 1957) for detection of nine biomarkers and was surveyed in three successive years (social jetlag calculated for n2018/19/20 = 3930/1601/1237). Data were analyzed by nonparametric univariate tests and mixed effects multivariate regression with social jetlag, chronotype, sex, age, body-mass index, and reported diseases as predictors and biomarker levels as outcomes. RESULTS: Higher social jetlag (≥0.65 h) was significantly associated with increased levels of total cholesterol and low-density lipoprotein cholesterol, particularly in participants older than 50 years (Mann-Whitney, men: pCHL = 0.0005, pLDL = 0.0009; women: pCHL = 0.0079, pLDL = 0.0068). Extreme chronotypes were associated with cardiovascular disease risk markers regardless of social jetlag (Kruskal-Wallis, p < 0.0001). Commuting to work and time stress were identified as important contributors to social jetlag. Individual longitudinal data showed that working from home decreased social jetlag and prolonged sleep. CONCLUSIONS: We report significant associations between sleep phase preference, social jetlag, and cardio-metabolic biomarkers.
- MeSH
- biologické markery MeSH
- cholesterol MeSH
- cirkadiánní rytmus * MeSH
- dospělí MeSH
- jet lag syndrom MeSH
- lidé MeSH
- metabolické nemoci * komplikace MeSH
- průzkumy a dotazníky MeSH
- spánek MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aims: The study objective was to assess occlusion in patients after orthodontic therapy with fixed appliance and in untreated individuals. Material and method: The sample included 81 students of dentistry at Masaryk University Brno aged 22-30 (mean age 24.3 ±1.67). The first group included 42 individuals without orthodontic treatment, and the second group 39 people after orthodontic therapy. Both groups filled in forms and a questionnaire on symptoms of temporomandibular dysfunction (TMD), CPI index, and digital analysis of static and dynamic occlusion performed with T-Scan. Results: No differences were found in overall condition of periodontium, mobility of mouth opening, chewing muscles pain. TMD symptoms were more frequent in the group after orthodontic therapy – clicking on the right. In case of static occlusion forces were distributed more in posterior segment of dentition in patients after orthodontic therapy. In case of dynamic occlusion there was found no difference in the guidance in lateropulsion (group, anterior or canine guidance). However, in patients after orthodontic therapy a longer time of disclusion (i.e. the interval between the beginning of lateropulsal movement and the achievement of one of the mentioned types of guidance) was observed. Conclusion: Orthodontic therapy may influence some parameters of static and dynamic occlusion. To determine the changes we can use digital occlusal analysis T-ScanTM, or apply one of techniques of articulation grinding.
Suprachiasmatic nucleus (SCN) of the hypothalamus is the master clock that drives circadian rhythms in physiology and behavior and adjusts their timing to external cues. Neurotransmitter glutamate and glutamatergic receptors sensitive to N-methyl-d-aspartate (NMDA) play a dual role in the SCN by coupling astrocytic and neuronal single cell oscillators and by resetting their phase in response to light. Recent reports suggested that signaling by endogenous cannabinoids (ECs) participates in both of these functions. We have previously shown that ECs, such as 2-arachidonoylglycerol (2-AG), act via CB1 receptors to affect the SCN response to light-mimicking NMDA stimulus in a time-dependent manner. We hypothesized that this ability is linked to the circadian regulation of EC signaling. We demonstrate that circadian clock in the rat SCN regulates expression of 2-AG transport, synthesis and degradation enzymes as well as its receptors. Inhibition of the major 2-AG synthesis enzyme, diacylglycerol lipase, enhanced the phase delay and lowered the amplitude of explanted SCN rhythm in response to NMDAR activation. Using microscopic PER2 bioluminescence imaging, we visualized how individual single cell oscillators in different parts of the SCN respond to the DAGL inhibition/NMDAR activation and shape response of the whole pacemaker. Additionally, we present strong evidence that the zero amplitude behavior of the SCN in response to single NMDA stimulus in the middle of subjective night is the result of a loss of rhythm in individual SCN cells. The paper provides new insights into the modulatory role of endocannabinoid signaling during the light entrainment of the SCN.
- MeSH
- agonisté excitačních aminokyselin farmakologie MeSH
- cirkadiánní rytmus účinky léků fyziologie MeSH
- endokanabinoidy fyziologie MeSH
- krysa rodu rattus MeSH
- lipoproteinlipasa antagonisté a inhibitory metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- N-methylaspartát farmakologie MeSH
- nucleus suprachiasmaticus cytologie účinky léků fyziologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Abandoning daylight saving time in Europe raises the topical issue of proper setting of yearlong social time, which needs mapping of various socio-demographic factors, including chronotype, in specific geographic regions. This study represents the first detailed large scale chronotyping in the Czech Republic based on data collected in the complex panel socio-demographic survey in households (total 8760 respondents) and the socio-physiological survey, in which chronotyped participants also provided blood samples (n = 1107). Chronotype assessment based on sleep phase (MCTQ questions and/or time-use diary) correlated with a self-assessed interval of best alertness. The mean chronotype of the Czech population defined as mid sleep phase (MSFsc) was 3.13 ± 0.02 h. Chronotype exhibited significant east-to-westward, north-to-southward, and settlement size-dependent gradients and was associated with age, sex, partnership, and time spent outdoors as previously demonstrated. Moreover, for subjects younger than 40 years, childcare was highly associated with earlier chronotype, while dog care was associated with later chronotype. Body mass index correlated with later chronotype in women whose extreme chronotype was also associated with lower plasma levels of protective HDL cholesterol. Based on the chronotype prevalence the results favour yearlong Standard Time as the best choice for this geographic region.
- MeSH
- časové faktory MeSH
- chronobiologie (obor) statistika a číselné údaje MeSH
- cirkadiánní hodiny fyziologie MeSH
- demografie statistika a číselné údaje MeSH
- dítě MeSH
- dospělí MeSH
- fotoperioda * MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- průzkumy a dotazníky statistika a číselné údaje MeSH
- sexuální faktory MeSH
- spánek fyziologie MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Circadian clocks coordinate physiological and behavioral rhythms that allow the organism to anticipate and adapt to daily changes in environment. The clock-driven cellular oscillations are highly tissue specific to efficiently fine-tune local signaling, manage energy use and segregate incompatible processes. In most peripheral tissues, food acts as the main cue that entrains the oscillations to external time. Food intake and energy balance are under control of endocannabinoid (EC) signaling. Despite this obvious link between the circadian and EC systems, evidence for their interaction started to emerge only recently. We used targeted lipidomics to analyze circadian variations in EC tone in rat plasma, liver and adrenal tissue. The results provide the evidence that ECs, monoacylglycerols, N-acylethanolamines and their precursors oscillate with a tissue-specific circadian phase in plasma and liver. We then identified a set of rhythmically expressed genes likely responsible for the variations in EC tissue tone. In contrast to the liver, EC levels did not oscillate in the adrenal glands. Instead, we revealed that local EC receptor genes are under circadian regulation. To explore the impact of metabolic signals on expression of these genes, we used daytime-restricted feeding schedule. We subsequently showed that daytime feeding strongly suppressed liver-expressed fatty acid binding protein 5 (Fabp5) and adrenal-expressed non-canonical endocannabinoid receptors Gpr55 and Trpv1, whereas it upregulated liver-expressed Trpv1 and glycerophosphodiester phosphodiesterase 1 (Gde1). Our results reveal tissue-specific mechanisms involved in interaction between endocannabinoid signaling, circadian system and metabolism.
- MeSH
- cirkadiánní hodiny MeSH
- cirkadiánní rytmus * MeSH
- endokanabinoidy krev metabolismus MeSH
- energetický metabolismus MeSH
- fotoperioda MeSH
- játra metabolismus MeSH
- krysa rodu rattus MeSH
- nadledviny metabolismus MeSH
- potkani Wistar MeSH
- regulace chuti k jídlu MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Light entrains the master circadian clock in the suprachiasmatic nucleus (SCN) predominantly through glutamatergic signaling via NMDA receptors. The magnitude and the direction of resulting phase shifts depend on timing of the photic stimulus. Previous reports based on behavioral and electrophysiological data suggested that endocannabinoids (EC) might reduce the ability of the SCN clock to respond to light. However, there is little direct evidence for the involvement of EC in entrainment of the rhythmic clock gene expression in the SCN. We have used luminescence recording of cultured SCN slices from mPer2Luc mice to construct a complete phase response curve (PRC) for NMDA receptor activation. The results demonstrated that NMDA administration phase-shifts the PER2 rhythm in a time-specific manner. A stable "singularity," in the course of which the clock seemingly stops while the overall phase is caught between delays and advances, can occur in response to NMDA at a narrow interval during the PER2 level decrease. NMDA-induced phase delays were affected neither by the agonist (WIN 55,212-2 mesylate) nor by the antagonist (rimonabant hydrochloride) of EC receptors. However, the agonist significantly reduced the NMDA-induced phase advance of the clock, while the antagonist enhanced the phase advance, causing a shift in the sensitivity window of the SCN to NMDA. The modulation of EC signaling in the SCN had no effect by itself on the phase of the PER2 rhythm. The results provide evidence for a modulatory role of EC in photic entrainment of the circadian clock in the SCN.
- Publikační typ
- časopisecké články MeSH
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.
- MeSH
- cirkadiánní hodiny MeSH
- cirkadiánní rytmus * MeSH
- fibroblasty fyziologie MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- potkani inbrední SHR fyziologie MeSH
- potkani Wistar MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Malfunction of the circadian timing system may result in cardiovascular and metabolic diseases, and conversely, these diseases can impair the circadian system. The aim of this study was to reveal whether the functional state of the circadian system of spontaneously hypertensive rats (SHR) differs from that of control Wistar rat. This study is the first to analyze the function of the circadian system of SHR in its complexity, i.e., of the central clock in the suprachiasmatic nuclei (SCN) as well as of the peripheral clocks. The functional properties of the SCN clock were estimated by behavioral output rhythm in locomotor activity and daily profiles of clock gene expression in the SCN determined by in situ hybridization. The function of the peripheral clocks was assessed by daily profiles of clock gene expression in the liver and colon by RT-PCR and in vitro using real time recording of Bmal1-dLuc reporter. The potential impact of the SHR phenotype on circadian control of the metabolic pathways was estimated by daily profiles of metabolism-relevant gene expression in the liver and colon. The results revealed that SHR exhibited an early chronotype, because the central SCN clock was phase advanced relative to light/dark cycle and the SCN driven output rhythm ran faster compared to Wistar rats. Moreover, the output rhythm was dampened. The SHR peripheral clock reacted to the dampened SCN output with tissue-specific consequences. In the colon of SHR the clock function was severely altered, whereas the differences are only marginal in the liver. These changes may likely result in a mutual desynchrony of circadian oscillators within the circadian system of SHR, thereby potentially contributing to metabolic pathology of the strain. The SHR may thus serve as a valuable model of human circadian disorders originating in poor synchrony of the circadian system with external light/dark regime.
- MeSH
- časové faktory MeSH
- cirkadiánní hodiny * MeSH
- druhová specificita MeSH
- fenotyp MeSH
- fibroblasty metabolismus MeSH
- játra metabolismus patofyziologie MeSH
- kolon metabolismus patofyziologie MeSH
- krysa rodu rattus MeSH
- metabolické sítě a dráhy fyziologie MeSH
- nucleus suprachiasmaticus metabolismus patofyziologie MeSH
- orgánová specificita MeSH
- pohybová aktivita fyziologie MeSH
- potkani inbrední SHR MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH