The 'gold standard' treatment of severe neonatal jaundice is phototherapy with blue-green light, which produces more polar photo-oxidation products that are easily excreted via the bile or urine. The aim of this study was to compare the effects of bilirubin (BR) and its major photo-oxidation product lumirubin (LR) on the proliferation, differentiation, morphology, and specific gene and protein expressions of self-renewing human pluripotent stem cell-derived neural stem cells (NSC). Neither BR nor LR in biologically relevant concentrations (12.5 and 25 µmol/L) affected cell proliferation or the cell cycle phases of NSC. Although none of these pigments affected terminal differentiation to neurons and astrocytes, when compared to LR, BR exerted a dose-dependent cytotoxicity on self-renewing NSC. In contrast, LR had a substantial effect on the morphology of the NSC, inducing them to form highly polar rosette-like structures associated with the redistribution of specific cellular proteins (β-catenin/N-cadherin) responsible for membrane polarity. This observation was accompanied by lower expressions of NSC-specific proteins (such as SOX1, NR2F2, or PAX6) together with the upregulation of phospho-ERK. Collectively, the data indicated that both BR and LR affect early human neurodevelopment in vitro, which may have clinical relevance in phototherapy-treated hyperbilirubinemic neonates.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Unconjugated hyperbilirubinemia, a feature of neonatal jaundice or Crigler-Najjar syndrome, can lead to neurotoxicity and even death. We previously demonstrated that unconjugated bilirubin (UCB) can be eliminated via transintestinal excretion in Gunn rats, a model of unconjugated hyperbilirubinemia, and that this is stimulated by enhancing fecal fatty acid excretion. Since transintestinal excretion also occurs for cholesterol (TICE), we hypothesized that increasing fecal cholesterol excretion and/or TICE could also enhance fecal UCB disposal and subsequently lower plasma UCB concentrations. METHODS: To determine whether increasing fecal cholesterol excretion could ameliorate unconjugated hyperbilirubinemia, we treated hyperbilirubinemic Gunn rats with ezetimibe (EZE), an intestinal cholesterol absorption inhibitor, and/or a liver X receptor (LXR) and farnesoid X receptor (FXR) agonist (T0901317 (T09) and obeticholic acid (OCA), respectively), known to stimulate TICE. RESULTS: We found that EZE treatment alone or in combination with T09 or OCA increased fecal cholesterol disposal but did not lower plasma UCB levels. CONCLUSIONS: These findings do not support a link between the regulation of transintestinal excretion of cholesterol and bilirubin. Furthermore, induction of fecal cholesterol excretion is not a potential therapy for unconjugated hyperbilirubinemia. IMPACT: Increasing fecal cholesterol excretion is not effective to treat unconjugated hyperbilirubinemia. This is the first time a potential relation between transintestinal excretion of cholesterol and unconjugated bilirubin is investigated. Transintestinal excretion of cholesterol and unconjugated bilirubin do not seem to be quantitatively linked. Unlike intestinal fatty acids, cholesterol cannot "capture" unconjugated bilirubin to increase its excretion. These results add to our understanding of ways to improve and factors regulating unconjugated bilirubin disposal in hyperbilirubinemic conditions.
- MeSH
- bilirubin chemie MeSH
- cholesterol metabolismus MeSH
- Criglerův-Najjarův syndrom metabolismus terapie MeSH
- dietní tuky farmakokinetika MeSH
- ezetimib farmakologie terapeutické užití MeSH
- feces chemie MeSH
- fluorované uhlovodíky farmakologie terapeutické užití MeSH
- haptoglobiny analýza MeSH
- hyperbilirubinemie terapie MeSH
- jaterní receptor X metabolismus MeSH
- krysa rodu rattus MeSH
- kyselina chenodeoxycholová analogy a deriváty farmakologie terapeutické užití MeSH
- lipidy krev MeSH
- náhodné rozdělení MeSH
- potkani Gunn MeSH
- PPAR delta metabolismus MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- střeva účinky léků metabolismus MeSH
- sulfonamidy farmakologie terapeutické užití MeSH
- žluč chemie MeSH
- žlučové kyseliny a soli metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Severe hyperbilirubinemia can cause permanent neurological damage in particular in neonates, whereas mildly elevated serum bilirubin protects from various oxidative stress-mediated diseases. The present work aimed to establish the intracellular unconjugated bilirubin concentrations (iUCB) thresholds differentiating between anti- and pro-oxidant effects. METHODS: Hepatic (HepG2), heart endothelial (H5V), kidney tubular (HK2) and neuronal (SH-SY5Y) cell lines were exposed to increasing concentration of bilirubin. iUCB, cytotoxicity, intracellular reactive oxygen species (ROS) concentrations, and antioxidant capacity (50% efficacy concentration (EC50)) were determined. RESULTS: Exposure of SH-SY5Y to UCB concentration > 3.6 µM (iUCB of 25 ng/mg) and >15 µM in H5V and HK2 cells (iUCB of 40 ng/mg) increased intracellular ROS production (p < 0.05). EC50 of the antioxidant activity was 21 µM (iUCB between 5.4 and 21 ng/mg) in HepG2 cells, 0.68 µM (iUCB between 3.3 and 7.5 ng/mg) in SH-SY5Y cells, 2.4 µM (iUCB between 3 and 6.7 ng/mg) in HK2 cells, and 4 µM (iUCB between 4.7 and 7.5 ng/mg) in H5V cells. CONCLUSIONS: In all the cell lines studied, iUCB of around 7 ng/mg protein had antioxidant activities, while iUCB > 25 ng/mg protein resulted in a prooxidant and cytotoxic effects. UCB metabolism was found to be cell-specific resulting in different iUCB.
- MeSH
- antioxidancia farmakologie MeSH
- bilirubin farmakologie MeSH
- hepatocelulární karcinom farmakoterapie metabolismus patologie MeSH
- hyperbilirubinemie patofyziologie MeSH
- lidé MeSH
- nádory jater farmakoterapie metabolismus patologie MeSH
- neuroblastom farmakoterapie metabolismus patologie MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- oxidancia farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Hypertrophic pancreatic islets (PI) of Goto Kakizaki (GK) diabetic rats contain a lower number of β-cells vs. non-diabetic Wistar rat PI. Remaining β-cells contain reduced mitochondrial (mt) DNA per nucleus (copy number), probably due to declining mtDNA replication machinery, decreased mt biogenesis or enhanced mitophagy. We confirmed mtDNA copy number decrease down to <30% in PI of one-year-old GK rats. Studying relations to mt nucleoids sizes, we employed 3D superresolution fluorescent photoactivable localization microscopy (FPALM) with lentivirally transduced Eos conjugate of mt single-stranded-DNA-binding protein (mtSSB) or transcription factor TFAM; or by 3D immunocytochemistry. mtSSB (binding transcription or replication nucleoids) contoured "nucleoids" which were smaller by 25% (less diameters >150 nm) in GK β-cells. Eos-TFAM-visualized nucleoids, composed of 72% localized TFAM, were smaller by 10% (immunochemically by 3%). A theoretical ~70% decrease in cell nucleoid number (spatial density) was not observed, rejecting model of single mtDNA per nucleoid. The β-cell maintenance factor Nkx6.1 mRNA and protein were declining with age (>12-fold, 10 months) and decreasing with fasting hyperglycemia in GK rats, probably predetermining the impaired mtDNA replication (copy number decrease), while spatial expansion of mtDNA kept nucleoids with only smaller sizes than those containing much higher mtDNA in non-diabetic β-cells.
- MeSH
- beta-buňky metabolismus patologie MeSH
- DNA vazebné proteiny genetika MeSH
- experimentální diabetes mellitus genetika metabolismus patologie MeSH
- homeodoménové proteiny genetika MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie genetika patologie MeSH
- mitofagie genetika MeSH
- pankreas exokrinní metabolismus MeSH
- potkani Wistar MeSH
- replikace DNA genetika MeSH
- transkripční faktory genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH