Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only β-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.
- MeSH
- biomimetické materiály chemická syntéza chemie farmakologie MeSH
- galektiny antagonisté a inhibitory genetika metabolismus MeSH
- glykoproteiny chemie metabolismus MeSH
- kinetika MeSH
- krevní proteiny antagonisté a inhibitory genetika metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The development of efficient galectin-3 (Gal-3) inhibitors draws attention in the field of anti-cancer therapy, especially due to the prominent role of extra- and intracellular Gal-3 in vital processes of cancerogenesis, such as immunosuppression, stimulation of tumor cells proliferation, survival, invasion, apoptotic resistance, and metastasis formation and progression. Here, by combining poly-LacNAc (Galβ4GlcNAc)-derived oligosaccharides with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, we synthesized multivalent glycopolymer inhibitors with a high potential to target extracellular and intracellular Gal-3. The inhibitory capabilities of the best conjugate in the studied series were in the nanomolar range proving the excellent Gal-3 inhibitory potential. Moreover, thorough investigation of the inhibitory effect in the biological conditions showed that the glycopolymers strongly inhibited Gal-3-induced apoptosis of T lymphocytes and suppressed migration and spreading of colorectal, breast, melanoma, and prostate cancer cells. In sum, the strong inhibitory activity toward Gal-3, combined with favorable pharmacokinetics of HPMA copolymers ensuring enhanced tumor accumulation via the enhanced permeability and retention effect, nominate the glycopolymers containing LacdiNAc-LacNAc (GalNAcβ4GlcNAcβ3Galβ4GlcNAc) tetrasaccharide as promising tools for preclinical in anti-cancer therapy evaluation.
- MeSH
- apoptóza * MeSH
- galektin 3 * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- pohyb buněk MeSH
- polymery MeSH
- T-lymfocyty MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
N-Acetyllactosamine (LacNAc; Galβ4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by β-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.
- MeSH
- akrylamidy chemie MeSH
- aminocukry chemie MeSH
- Bacillus enzymologie MeSH
- beta-galaktosidasa metabolismus MeSH
- disacharidy chemická syntéza MeSH
- ELISA MeSH
- epitopy MeSH
- galektin 1 analýza metabolismus MeSH
- galektiny analýza metabolismus MeSH
- katalýza MeSH
- krevní proteiny analýza metabolismus MeSH
- magnetická rezonanční spektroskopie MeSH
- polymerizace MeSH
- polymery chemie metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cellular communication events are mediated by interactions between cell-surface sugars and lectins, which are carbohydrate-binding proteins. Galectins are β-galactosyl-binding lectins that bridge molecules by their sugar moieties, forming a signaling and adhesion network. Severe changes in glycosylation and galectin expression accompany major processes in oncogenesis, cardiovascular disorders, and other pathologies, making galectins attractive therapeutic targets. Here we discuss advanced strategies of chemo-enzymatic carbohydrate synthesis for creating lead glycomimetics and (neo-)glycoconjugates for galectin-1 and -3 targeting in biomedicine and biotechnology. We will describe the challenges and bottlenecks on the route into biomedical and biotechnological practice and present the first clinical candidates. The coming era will see an exciting translation of selective well-defined high-affinity galectin ligands from bench to bedside.
Clostridium difficile infections cause gastrointestinal disorders and can lead to life-threatening conditions. The symptoms can vary from severe diarrhea to the formation of pseudomembranous colitis and therefore trigger a need for new therapies. The initial step of disease is the binding of the bacterial enterotoxins toxin A and B to the cell surface of epithelial intestinal cells. Scavenging of the toxins is crucial to inhibit their fatal effect in the human body and circumvent the administration of antibiotics. Cell surface glycans are common as ligands for TcdA. Although crucial for carbohydrate-protein interactions, a multivalent presentation of glycans for binding has been hardly considered. Here, we establish a neo-glycoprotein-based glycan library to identify an effective multivalent glycan ligand for TcdA. It comprises 40 different glycan epitopes based on N-acetyllactosamine precursors. Nine structures exhibit strong binding of the receptor domain. Among them, the Lewisy-Lewisx-epitope shows the best performance for binding both the receptor domain and the holotoxin. Therefore, the glycan was synthesized de novo and coupled to BSA as a scaffold for multivalent presentation. The corresponding neo-glycoprotein facilitates the proper scavenging of TcdA in vitro and effectively protects HT29 cells from TcdA-induced cell damage.
Galectin-3 (Gal-3) is recognized as a prognostic marker in several cancer types. Its involvement in tumor development and proliferation makes this lectin a promising target for early cancer diagnosis and anti-cancer therapies. Gal-3 recognizes poly-N-acetyllactosamine (LacNAc)-based carbohydrate motifs of glycoproteins and glycolipids with a high specificity for internal LacNAc epitopes. This study analyzes the mode and kinetics of binding of Gal-3 to a series of multivalent neo-glycoproteins presenting complex poly-LacNAc-based oligosaccharide ligands on a scaffold of bovine serum albumin. These neo-glycoproteins rank among the strongest Gal-3 ligands reported, with Kd reaching sub-nanomolar values as determined by surface plasmon resonance. Significant differences in the binding kinetics were observed within the ligand series, showing the tetrasaccharide capped with N,N'-diacetyllactosamine (LacdiNAc) as the strongest ligand of Gal-3 in this study. A molecular model of the Gal-3 carbohydrate recognition domain with docked oligosaccharide ligands is presented that shows the relations in the binding site at the molecular level. The neo-glycoproteins presented herein may be applied for selective recognition of Gal-3 both on the cell surface and in blood serum.
- MeSH
- galektin 3 chemie metabolismus MeSH
- glykoproteiny chemie farmakologie MeSH
- laktosa analogy a deriváty chemie MeSH
- lidé MeSH
- ligandy MeSH
- sérový albumin hovězí chemie MeSH
- simulace molekulového dockingu * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Galectin-3 (Gal-3), a member of the β-galactoside-binding lectin family, is a tumor biomarker and involved in tumor angiogenesis and metastasis. Gal-3 is therefore considered as a promising target for early cancer diagnosis and anticancer therapy. We here present the synthesis of a library of tailored multivalent neo-glycoproteins and evaluate their Gal-3 binding properties. By the combinatorial use of glycosyltransferases and chemo-enzymatic reactions, we first synthesized a set of N-acetyllactosamine (Galβ1,4GlcNAc; LacNAc type 2)-based oligosaccharides featuring five different terminating glycosylation epitopes, respectively. Neo-glycosylation of bovine serum albumin (BSA) was accomplished by dialkyl squarate coupling to lysine residues resulting in a library of defined multivalent neo-glycoproteins. Solid-phase binding assays with immobilized neo-glycoproteins revealed distinct affinity and specificity of the multivalent glycan epitopes for Gal-3 binding. In particular, neo-glycoproteins decorated with N',N″-diacetyllactosamine (GalNAcβ1,4GlcNAc; LacdiNAc) epitopes showed high selectivity and were demonstrated to capture Gal-3 from human serum with high affinity. Furthermore, neo-glycoproteins with terminal biotinylated LacNAc glycan motif could be utilized as Gal-3 detection agents in a sandwich enzyme-linked immunosorbent assay format. We conclude that, in contrast to antibody-based capture steps, the presented neo-glycoproteins are highly useful to detect functionally intact Gal-3 with high selectivity and avidity. We further gain novel insights into the binding affinity of Gal-3 using tailored multivalent neo-glycoproteins, which have the potential for an application in the context of cancer-related biomedical research.
- MeSH
- aminocukry chemická syntéza chemie metabolismus MeSH
- galektin 3 antagonisté a inhibitory metabolismus MeSH
- glykoproteiny chemická syntéza chemie metabolismus farmakologie MeSH
- glykosylace MeSH
- lidé MeSH
- ligandy MeSH
- oligosacharidy chemická syntéza chemie metabolismus MeSH
- sérový albumin hovězí chemická syntéza chemie metabolismus farmakologie MeSH
- skot MeSH
- techniky kombinatorické chemie MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aryl sulfotransferase IV (AstIV) from rat liver was overexpressed in Escherichia coli and purified to homogeneity. Using the produced mammalian liver enzyme, sulfation-the Phase II conjugation reaction-of optically pure silybin diastereoisomers (silybin A and B) was tested. As a result, silybin B was sulfated yielding 20-O-silybin B sulfate, whereas silybin A was completely resistant to the sulfation reaction. Milligram-scale sulfation of silybin B was optimized employing resting E. coli cells producing AstIV, thus avoiding the use of expensive 3'-phosphoadenosine-5'-phosphate cofactor and laborious enzyme purification. Using this approach, we were able to reach 48 % conversion of silybin B into its 20-sulfate within 24 h. The sulfated product was isolated by solid phase extraction and its structure was characterized by HRMS and NMR. Sulfation reaction of silybin appeared strictly stereoselective; only silybin B was sulfated by AstIV.
- MeSH
- antioxidancia metabolismus MeSH
- arylsulfotransferasa genetika izolace a purifikace metabolismus MeSH
- Escherichia coli genetika MeSH
- játra enzymologie MeSH
- krysa rodu rattus MeSH
- rekombinantní proteiny genetika izolace a purifikace metabolismus MeSH
- silymarin metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work reveals new structural relationships in the complex process of the interaction between activation receptors of natural killer cells (rat NKR-P1, human CD69) and novel bivalent carbohydrate glycomimetics. The length, glycosylation pattern and linker structure of receptor ligands were examined with respect to their ability to precipitate the receptor protein from solution, which simulates the in vivo process of receptor aggregation during NK cell activation. It was found that di-LacdiNAc triazole compounds show optimal performance, reaching up to 100% precipitation of the present protein receptors, and achieving high immunostimulatory activities without any tendency to trigger activation-induced apoptosis. In the synthesis of the compounds tested, two enzymatic approaches were applied. Whereas a β-N-acetylhexosaminidase could only glycosylate one of the two acceptor sites available with yields below 10%, the Y284L mutant of human placental β1,4-galactosyltransferase-1 worked as a perfect synthetic tool, accomplishing even quantitative glycosylation at both acceptor sites and with absolute regioselectivity for the C-4 position. This work insinuates new directions for further ligand structure optimisation and demonstrates the strong synthetic potential of the mutant human placental β1,4-galactosyltransferase-1 in the synthesis of multivalent glycomimetics and glycomaterials.
- MeSH
- aktivace lymfocytů účinky léků imunologie MeSH
- beta-N-acetylhexosaminidasy metabolismus MeSH
- biomimetika metody MeSH
- buňky NK chemie účinky léků imunologie metabolismus MeSH
- CD antigeny imunologie metabolismus MeSH
- diferenciační antigeny T-lymfocytů imunologie metabolismus MeSH
- galaktosyltransferasy genetika metabolismus MeSH
- imunoprecipitace MeSH
- krysa rodu rattus MeSH
- lektiny typu C agonisté imunologie metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární mimikry MeSH
- mutace MeSH
- placenta enzymologie MeSH
- polysacharidy chemická syntéza farmakologie MeSH
- receptory buněk NK agonisté imunologie metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- těhotenství MeSH
- vazba proteinů účinky léků imunologie MeSH
- vazebná místa účinky léků imunologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human placental beta1,4-galactosyltransferase-I (EC 2.4.1.38) transfers the galactosyl moiety from UDP-Gal to various GlcNAc or Glc acceptors in vivo. Here, we describe the construction of its Y284L mutant as a His(6)propeptide-catbeta4GalT1 construct, in which the Gal-transferase activity was totally abolished in favor of its GalNAc-transferase activity. We used this mutant in the synthesis of three mono- and bivalent LacdiNAc glycomimetics with good yields. These compounds proved to be powerful ligands of two activation receptors of natural killer cells, NKR-P1 and CD69. A synthetic bivalent tethered di-LacdiNAc is the best currently known precipitation agent for both of these receptors and has promising potential for the development of immunoactive glycodrugs.
- MeSH
- bakteriální proteiny metabolismus MeSH
- Campylobacter jejuni enzymologie MeSH
- CD antigeny metabolismus MeSH
- diferenciační antigeny T-lymfocytů metabolismus MeSH
- epimerázy sacharidů metabolismus MeSH
- galaktosyltransferasy genetika metabolismus MeSH
- glykokonjugáty biosyntéza chemická syntéza metabolismus MeSH
- laktosa analogy a deriváty biosyntéza chemická syntéza metabolismus MeSH
- lektinové receptory NK-buněk - podrodina B metabolismus MeSH
- lektiny typu C MeSH
- lidé MeSH
- mutace MeSH
- placenta enzymologie MeSH
- substrátová specifita MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
- publikace stažené z tisku MeSH