Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
- MeSH
- Apicomplexa klasifikace genetika metabolismus MeSH
- biosyntetické dráhy genetika MeSH
- desaturasy mastných kyselin klasifikace genetika metabolismus MeSH
- druhová specificita MeSH
- elongasy mastných kyselin klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- mastné kyseliny biosyntéza MeSH
- molekulární evoluce MeSH
- protozoální infekce parazitologie MeSH
- protozoální proteiny klasifikace genetika metabolismus MeSH
- synthasa mastných kyselin, typ 2 klasifikace genetika metabolismus MeSH
- synthasa mastných kyselin, typ I klasifikace genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Diatoms are unicellular algae and evolved by secondary endosymbiosis, a process in which a red alga-like eukaryote was engulfed by a heterotrophic eukaryotic cell. This gave rise to plastids of remarkable complex architecture and ultrastructure that require elaborate protein importing, trafficking, signaling and intracellular cross-talk pathways. Studying both plastids and mitochondria and their distinctive physiological pathways in organello may greatly contribute to our understanding of photosynthesis, mitochondrial respiration and diatom evolution. The isolation of such complex organelles, however, is still demanding, and existing protocols are either limited to a few species (for plastids) or have not been reported for diatoms so far (for mitochondria). In this work, we present the first isolation protocol for mitochondria from the model diatom Thalassiosira pseudonana. Apart from that, we extended the protocol so that it is also applicable for the purification of a high-quality plastids fraction, and provide detailed structural and physiological characterizations of the resulting organelles. Isolated mitochondria were structurally intact, showed clear evidence of mitochondrial respiration, but the fractions still contained residual cell fragments. In contrast, plastid isolates were virtually free of cellular contaminants, featured structurally preserved thylakoids performing electron transport, but lost most of their stromal components as concluded from Western blots and mass spectrometry. Liquid chromatography electrospray-ionization mass spectrometry studies on mitochondria and thylakoids, moreover, allowed detailed proteome analyses which resulted in extensive proteome maps for both plastids and mitochondria thus helping us to broaden our understanding of organelle metabolism and functionality in diatoms.
Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.
The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
- MeSH
- biologická evoluce MeSH
- Blastocystis cytologie enzymologie genetika metabolismus MeSH
- energetický metabolismus MeSH
- genom mitochondriální MeSH
- glykolýza * MeSH
- mitochondrie genetika metabolismus MeSH
- rozsivky cytologie enzymologie genetika metabolismus MeSH
- symbióza MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diatoms are unicellular algae and important primary producers. The process of carbon fixation in diatoms is very efficient even though the availability of dissolved CO2 in sea water is very low. The operation of a carbon concentrating mechanism (CCM) also makes the more abundant bicarbonate accessible for photosynthetic carbon fixation. Diatoms possess carbonic anhydrases as well as metabolic enzymes potentially involved in C4 pathways; however, the question as to whether a C4 pathway plays a general role in diatoms is not yet solved. While genome analyses indicate that the diatom Phaeodactylum tricornutum possesses all the enzymes required to operate a C4 pathway, silencing of the pyruvate orthophosphate dikinase (PPDK) in a genetically transformed cell line does not lead to reduced photosynthetic carbon fixation. In this study, we have determined the intracellular location of all enzymes potentially involved in C4-like carbon fixing pathways in P. tricornutum by expression of the respective proteins fused to green fluorescent protein (GFP), followed by fluorescence microscopy. Furthermore, we compared the results to known pathways and locations of enzymes in higher plants performing C3 or C4 photosynthesis. This approach revealed that the intracellular distribution of the investigated enzymes is quite different from the one observed in higher plants. In particular, the apparent lack of a plastidic decarboxylase in P. tricornutum indicates that this diatom does not perform a C4-like CCM.
- MeSH
- Arabidopsis fyziologie MeSH
- fosfoenolpyruvátkarboxylasa klasifikace metabolismus MeSH
- fotosyntéza fyziologie MeSH
- koloběh uhlíku MeSH
- kukuřice setá fyziologie MeSH
- mitochondrie enzymologie MeSH
- pyruvátkarboxylasa genetika metabolismus MeSH
- regulace genové exprese enzymů fyziologie MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- rozsivky enzymologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH