Hepatic fibrosis progresses concomitantly with a variety of biomechanical alternations, especially increased liver stiffness. These biomechanical alterations have long been considered as pathological consequences. Recently, growing evidence proposes that these alternations result in the fibrotic biomechanical microenvironment, which drives the activation of hepatic stellate cells (HSCs). Here, an inorganic ascorbic acid-oxidase (AAO) mimicking nanozyme loaded with liquiritigenin (LQ) is developed to trigger remodeling of the fibrotic biomechanical microenvironment. The AAO mimicking nanozyme is able to consume intracellular ascorbic acid, thereby impeding collagen I deposition by reducing its availability. Simultaneously, LQ inhibits the transcription of lysyl oxidase like 2 (LOXL2), thus impeding collagen I crosslinking. Through its synergistic activities, the prepared nanosystem efficiently restores the fibrotic biomechanical microenvironment to a near-normal physiological condition, promoting the quiescence of HSCs and regression of fibrosis. This strategy of remodeling the fibrotic biomechanical microenvironment, akin to "pulling the rug out from under", effectively treats hepatic fibrosis in mice, thereby highlighting the importance of tissue biomechanics and providing a potential approach to improve hepatic fibrosis treatment.
- MeSH
- biomechanika MeSH
- buněčné mikroprostředí účinky léků MeSH
- flavanony farmakologie chemie MeSH
- jaterní cirhóza * farmakoterapie metabolismus patologie MeSH
- jaterní hvězdicovité buňky * metabolismus cytologie účinky léků MeSH
- kolagen typu I metabolismus MeSH
- kyselina askorbová * farmakologie metabolismus chemie MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
- MeSH
- adaptivní imunita * MeSH
- lidé MeSH
- přirozená imunita * MeSH
- stárnutí * imunologie MeSH
- střevní mikroflóra * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR. For this, a glucose-responsive hydrogel named Cu-PEI/siMyD88@GEMA-Con A (CSGC) is developed that effectively delivers Cu-PEI/siMyD88 nanoparticles (NPs) to the retinal pigment epithelium (RPE). The Cu-PEI NPs act as antioxidant enzymes, scavenging ROS and inhibiting RPE pyroptosis, ultimately blocking primary BRB injury by reducing microglial activation and Th1 differentiation. Simultaneously, MyD88 expression silence in combination with the Cu-PEI NPs decreases IL-18 production, synergistically reduces VEGF levels, and enhances tight junction proteins expression, thus blocking secondary BRB injury. In summary, via remodeling the RME, the CSGC hydrogel has the potential to disrupt the detrimental cycle of cross-interference between primary and secondary BRB injury, providing a promising therapeutic strategy for DR.
- MeSH
- buněčné mikroprostředí účinky léků MeSH
- diabetická retinopatie * farmakoterapie metabolismus MeSH
- glukosa * metabolismus MeSH
- hematoretinální bariéra * metabolismus účinky léků MeSH
- hydrogely * farmakologie MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nanočástice MeSH
- retina účinky léků metabolismus MeSH
- retinální pigmentový epitel metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nutrient or energy deprivation, especially glucose restriction, is a promising anticancer therapeutic approach. However, establishing a precise and potent deprivation strategy remains a formidable task. The Golgi morphology is crucial in maintaining the function of transport proteins (such as GLUT1) driving glycolysis. Thus, in this study, we present a "Golgi-customized Trojan horse" based on tellurium loaded with apigenin (4',5,7-trihydroxyflavone) and human serum albumin, which was able to induce GLUT1 plasma membrane localization disturbance via Golgi dispersal leading to the inhibition of tumor glycolysis. Diamond-shaped delivery system can efficiently penetrate into cells as a gift like Trojan horse, which decomposes into tellurite induced by intrinsically high H2O2 and GSH levels. Consequently, tellurite acts as released warriors causing up to 3.8-fold increase in Golgi apparatus area due to the down-regulation of GOLPH3. Further, this affects GLUT1 membrane localization and glucose transport disturbance. Simultaneously, apigenin hinders ongoing glycolysis and causes significant decrease in ATP level. Collectively, our "Golgi-customized Trojan horse" demonstrates a potent antitumor activity because of its capability to deprive energy resources of cancer cells. This study not only expands the applications of tellurium-based nanomaterials in the biomedicine but also provides insights into glycolysis restriction for anticancer therapy.
- MeSH
- apigenin * aplikace a dávkování farmakologie MeSH
- buněčná membrána * metabolismus účinky léků MeSH
- glukosa metabolismus MeSH
- glykolýza * účinky léků MeSH
- Golgiho aparát * metabolismus účinky léků MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- přenašeč glukosy typ 1 * metabolismus MeSH
- protinádorové látky aplikace a dávkování farmakologie MeSH
- telur * aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
- MeSH
- imunoterapie * metody MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * imunologie terapie metabolismus patologie MeSH
- neutrofily * imunologie metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
- MeSH
- Alzheimerova nemoc MeSH
- amyloidní beta-protein metabolismus MeSH
- lidé MeSH
- neurodegenerativní nemoci * MeSH
- Parkinsonova nemoc metabolismus MeSH
- sekreční fenotyp asociovaný se senescencí MeSH
- signální transdukce MeSH
- stárnutí buněk * účinky léků MeSH
- zkracování telomer účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.
- Publikační typ
- časopisecké články MeSH
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
- MeSH
- 1-fosfatidylinositol-3-kinasa * metabolismus terapeutické užití MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- inhibitory fosfoinositid-3-kinasy farmakologie MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Liver fibrosis is a reversible pathological process caused by chronic liver damage and a major risk factor for hepatocellular carcinoma (HCC). Hepatic stellate cell (HSC) activation is considered the main target for liver fibrosis therapy. However, the efficiency of this strategy is limited due to the complex microenvironment of liver fibrosis, including excessive extracellular matrix (ECM) deposition and hypoxia-induced imbalanced ECM metabolism. Herein, nilotinib (NIL)-loaded hyaluronic acid (HA)-coated Ag@Pt nanotriangular nanozymes (APNH NTs) were developed to inhibit HSCs activation and remodel the microenvironment of liver fibrosis. APNH NTs efficiently eliminated intrahepatic reactive oxygen species (ROS) due to their inherent superoxide dismutase (SOD) and catalase (CAT) activities, thereby downregulating the expression of NADPH oxidase-4 (NOX-4) and inhibiting HSCs activation. Simultaneously, the oxygen produced by the APNH NTs further alleviated the hypoxic microenvironment. Importantly, the released NIL promoted collagen depletion by suppressing the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), thus synergistically remodeling the microenvironment of liver fibrosis. Notably, an in vivo study in CCl4-induced mice revealed that APNH NTs exhibited significant antifibrogenic effects without obvious long-term toxicity. Taken together, the data from this work suggest that treatment with the synthesized APNH NTs provides an enlightening strategy for remodeling the microenvironment of liver fibrosis with boosted antifibrogenic activity.
- Publikační typ
- časopisecké články MeSH