Triclosan and Triclocarban, preservatives widely used in cosmetics and other consumer products, underwent evaluation using a battery of new-approach methodologies in vitro (NAMs). Specifically, the Microplate Ames Test (MPFTM Test, Xenometrix, Allschwil, Switzerland) was employed to assess mutagenicity, the Comet assay in vitro on the HaCat cell line and the Mammalian Chromosome Aberration Test were utilized to evaluate genotoxicity, and the XenoScreen® YES/YAS assay was applied to investigate endocrine disruption. The chemicals did not exhibit any positive responses for mutagenicity. However, the mammalian chromosome aberration test identified both chemicals as being positive for genotoxicity at 10 μg/mL. In the Comet assay, the percentage of DNA in the tail significantly increased in a concentration-dependent manner (at 5 and 10 μg/mL for Triclosan, at 2.5, 5, and 10 μg/mL for Triclocarban). The positive response depended on the increasing concentration and the duration of exposure. Triclosan, but not Triclocarban in any of the endocrine assays performed, indicated a potential for endocrine activity in the anti-estrogenic and anti-androgenic assays. The positive in vitro results detected were obtained for concentrations relevant to final products. The alarming findings obtained with the use of new-approach methodologies (NAMs) justify the current precautionary regulatory approach, limiting the use of these preservatives.
- Publikační typ
- časopisecké články MeSH
Animal testing has been prohibited for the safety assessment of cosmetic ingredients or finished products. Thus, alternative non-animal methods, followed by confirmatory clinical studies on human volunteers, should be used as the sole legally acceptable approach within the EU. The safety assessment of cosmetic products requires the involvement of multiple scientific disciplines, including analytical chemistry and biomedicine, as well as in chemico, in vitro and in silico toxicology. Recent data suggest that fragrance components may exert multiple adverse biological effects, e.g. cytotoxicity, skin sensitisation, (photo)genotoxicity, mutagenicity, reprotoxicity and endocrine disruption. Therefore, a pilot study was conducted with selected samples of fragrance-based products, such as deodorant, eau de toilette and eau de parfum, with the aim of integrating results from a number of alternative non-animal methods suitable for the detection of the following toxicological endpoints: cytotoxicity (with 3T3 Balb/c fibroblasts); skin sensitisation potential (in chemico method, DPRA); skin sensitisation potential (LuSens in vitro method, based on human keratinocytes); genotoxicity potential (in vitro Comet assay with 3T3 Balb/c cells); and endocrine disruption (in vitro YES/YAS assay). The presence of twenty-four specific known allergens in the products was determined by using GC-MS/MS. The strategies for estimation of the NOAEL of a mixture of allergens, which were proposed by the Scientific Committee on Consumer Products in their 'Opinion on Tea tree oil' document and by the Norwegian Food Safety Authority in their 'Risk Profile of Tea tree oil' report, were used as models for the NOAEL estimation of the mixtures of allergens that were identified in the individual samples tested in this study.
- MeSH
- alergeny toxicita analýza MeSH
- kosmetické přípravky * toxicita MeSH
- lidé MeSH
- parfém * analýza MeSH
- pilotní projekty MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- tandemová hmotnostní spektrometrie MeSH
- tea tree oil * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Indoor air is typically a mixture of many chemicals at low concentrations without any adverse health effects alone, but in mixtures they may cause toxicity and risks to human health. The aim of this study was by using new approach methods to assess the potential toxicity of indoor air condensates. In specific, different in vitro test methods including cyto-and immunotoxicity, skin sensitization and endocrine disruption were applied. In addition to biological effects, the indoor air samples were subjected to targeted analysis of 25 volatile organic compounds (VOCs) and Genapol X-80 (a nonionic emulsifier) suspected to be present in the samples, and to a non-targeted "total chemical scan" to find out whether the chemical composition of the samples is associated with the biological effects. The results confirm that assessing health risks of indoor air by analysing individual chemicals is not an adequate approach: We were not able to detect the VOCs and Genapol X-80 in the indoor air samples, yet, several types of toxicity, namely, cytotoxicity, immunotoxicity, skin sensitization and endocrine disruption were detected. In the non-targeted total chemical scan of the indoor air samples, a larger number of compounds were found in the cytotoxic samples than in the non-cytotoxic samples supporting the biological findings. If only one biological method would be selected for the screening of indoor air quality, THP-1 macrophage/WST-1 assay would best fit for the purpose as it is sensitive and serves as a good representative for different sub-toxic end points, including immunotoxicity, (skin) sensitization and endocrine disruption.
- Publikační typ
- časopisecké články MeSH
Health care facilities and hospitals generate significant amounts of wastewater which are released into the sewage system, either after a preliminary treatment or without any further treatment. Hospital wastewater may contain large amounts of hazardous chemicals and pharmaceuticals, some of which cannot be eliminated entirely by wastewater treatment plants. Moreover, hospital effluents may be loaded with a plethora of pathogenic microorganisms or other microbiota and microbiome residues. The need to monitor hospital effluents for their genotoxic hazard is of high importance, as detailed information is scarce. DNA-based information can be acquired directly from samples through the application of various molecular methods, while cell-based biomonitoring assays can provide important information about impaired cellular pathways or mechanisms of toxicity without prior knowledge of the identity of each toxicant. In our study, we evaluated samples of chlorinated hospital wastewater discharged into the sewage system after this disinfection process. The assessment of cytotoxicity, genotoxicity and mutagenicity of the hospital effluents was performed in vitro by using a broad battery of biomonitoring assays that are relevant for human health effects. All the tested hospital wastewater samples could be classified as potentially genotoxic, and it is concluded that the microbiota present in hospital wastewater might contribute to this genotoxic potential.
- MeSH
- chemické látky znečišťující vodu * analýza toxicita MeSH
- lidé MeSH
- nemocnice MeSH
- odpadní voda * toxicita MeSH
- poškození DNA MeSH
- testy genotoxicity MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Medical devices must be tested before marketing in accordance with ISO EN 10993-10 in order to avoid skin sensitization. This standard predominantly refers to the in vivo test but does not exclude the use of in vitro methods that have been sufficiently technically and scientifically validated for medical device testing. It is foreseen that, due to the complexity of the sensitization endpoint, a combination of several methods will be needed to address all key events occurring in the sensitization process. The objective of this pilot study was to evaluate the sensitization potential of selected medical devices using a combination of in chemico (DPRA, OECD TG 442C) and in vitro (LuSens, OECD TG 442D) methods in comparison with the in vivo (LLNA DA, OECD TG 442A) method and to suggest a possible testing strategy for the safety assessment of medical device extracts. Overall, one of the 42 tested samples exhibited positive results in all employed test methods, while 33 samples were predicted as non-sensitizing in all three performed methods. This study demonstrated good agreement between in vitro and in vivo results regarding non-sensitizing samples; however, some discrepancies in positive classification were recorded. A testing strategy is suggested in which negative results are accepted and any positive results in the in chemico or in vitro tests are followed up with a third in vitro test and evaluated in accordance with the “2 out of 3 approach”. This strategy may reduce and replace animal use for testing the sensitization potential of medical devices.
- MeSH
- alergická kontaktní dermatitida * MeSH
- alternativy testů na zvířatech * MeSH
- biotest MeSH
- kůže MeSH
- pilotní projekty MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH